
Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١

Lecture (8)

RealRealRealReal----Time Operating SystemsTime Operating SystemsTime Operating SystemsTime Operating Systems

Prof. Kasim M. Al-Aubidy
Computer Engineering Department

Philadelphia University
Summer Semester, 2011



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٢

Lecture Outline:
� Explain components of a simple operating system.
� Describe types of operating systems.
� Why we use a RTOS?
� What an RTOS does? How it works?
� Benefits and drawbacks of an RTOS.
� Describe and explain by examples the basic task synchronization

mechanisms.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٣

General Purpose Operating System:
• Access to the hardware of the system and to the I/O devices is through the operating system

(OS).
• In many real-time and multiprogramming systems restriction of access is enforced by

hardware and software traps.
• A general purpose operating system will provide some facilities that are not required in a

particular application.
• Recently, operating systems which provide only a minimum kernel have become popular,

additional features can be added.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٤

General Structure of a Simple OS:
• The command processor provides a means by

which the user can communicate with the OS.
• The actual processing of the user commands is

done by BDOS, which also handles the I/O and
the file operations on the disks.

• The BDOS makes the actual management of the
file and I/O operations transparent to the user.

• Application programs will normally communicate
with the hardware of the system through system
calls which are processed by the BDOS.

• The BIOS contains the various device drivers
which manipulate the physical devices and OS.

• Devices are treated as logical or physical units.
Logical devices are software constructs used to
simplify the user interface. User programs perform
I/O to logical devices and the BDOS connects the
logical devices to the physical device.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٥

Types of Operating Systems:
There are different types of OSs:

– Single-user and Multi-user operating systems.
– Single-task and Multi-tasking operating systems.
– Real-time operating systems.

Multi-User Operating Systems:
• The OS ensures that each user can run a single program

as if the had the whole computer system.
• At any given instance, it is not possible to predict which

user will have the use of the CPU.
• The OS ensures that one user program cannot interfere

with the operation of another user program. Each user
program runs in its own protected environment.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٦

Multi-Tasking Operating Systems:
• In a multi-tasking operating system, it is

assumed that there is a single user and that
the various tasks co-operate to serve the
requirements of the user.

• Co-operation requires that all tasks
communicate with each other and share
common data.

• Task communication and data sharing will
be regulated so that the OS is able to
prevent inadvertent communication or data
access, and hence protect data which is
private to a task.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٧

Real-Time Operating System (RTOS):
• A fundamental requirement of an operating system is to allocate the resources of

the computer to the various activities which have to be performed. In a RTOS this
allocation procedure is complicated by the fact that some of the activities are time
critical and hence have a higher priority than others. Therefore, there must be some
means of allocating priorities to tasks and of scheduling allocation of CPU time to
the tasks according to some priority scheme.

• A task may use another task, thus tasks may need to communicate with each other.
The OS must have some means of enabling tasks either to share memory for the
exchange of data or to provide a mechanism by which tasks can send messages to
each other.

• Tasks may need to be invoked by external events and hence the OS must support
the use on interrupts.

• Tasks may need to share data and they may require access to various hardware and
software components, hence there has to be a mechanism for preventing two tasks
from attempting to use the same resource at the same time.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٨

• A real-time multi-tasking operating
system has to support the resource
sharing and the timing requirements of
the tasks an the functions can be divided
as follows:

– Task Management: the allocation of
memory and processor time
(scheduling) to tasks.

– Memory Management: control of
memory allocation.

– Intertask Communication &
Synchronization: provision of support
mechanisms to provide safe
communication between tasks and to
enable tasks to synchronies their
activities.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٩

Scheduling Strategies:
There are two basic strategies for the scheduling of time allocation on a single CPU, these are:
1. Cyclic Strategy:

– The task uses the CPU for as long as it wishes.
– It is a very simple strategy which is highly efficient in that it minimizes the time lost in switching

between tasks.
– It is an efficient strategy for small embedded systems for which the execution times for each task

run are carefully calculated and for which the software is carefully divided into appropriate task
segments.

– This approach is too restrictive since it requires that the task units have similar execution times.
It is difficult to deal with random events using this approach.

2. Pre-emptive Strategies:
– There are many pre-emptive strategies, all involve the possibility that a task will be interrupted

before it has completed a particular invocation.
– The simplest form of pre-emptive scheduling is to use a time slicing approach. Using this

strategy each task is allocated a fixed amount of CPU time (number of clock ticks), and at the
end of this time it is stopped and the next task in the list is run. If a task completes before the end
of its time slice, the next task in the list is run immediately.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٠

Priority Scheduling Mechanism:
• Tasks are allocated a priority level and at the end of a predetermined time slice, the task

with highest priority of those ready to run is chosen and is given control of the CPU.
• Task priorities may be fixed (static priority system) or may be changed during system

execution (dynamic priority system).
• Dynamic priority schemes can increase the flexibility of the system.
• Changing priorities is risky as it makes it much harder to predict and test the behavior of

the system.
• The task management system has to deal with the handling of interrupts. These may be

hardware interrupts caused by external events, or software interrupts generated by a
running task.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١١

Priority Structures:
• In a real-time system the designer has to assign

priorities to the tasks in the system.
• The priority will depend on how quickly a task

will have to respond to a particular event.
• Most RTOSs provide facilities such that tasks

can be divided into three board levels:
1. Interrupt Level: at this level are the service routines

for the tasks and devices which require very fast
response (measured in msec.) Example: real-time
clock task.

2. Clock Level: at this level are the tasks which require
accurate timing and repetitive processing, such as
the sampling and control tasks.

3. Base Level: tasks at this level are of low priority and
either have no deadlines to meet or are allowed a
wide margin of error in their timing. Tasks at this
level may be allocated priorities or may all run at
a single priority level.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٢



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٣

Clock Level:
• One interrupt level task will be the real-time clock.
• Typical values 1-200 msec.
• Each clock interrupt is known as a tick and represents the smallest time interval in the

system.
• The function of the clock interrupt handling routine is to update the time of day clock in the

system and to transfer control to dispatcher.
• The scheduler selects which task is to run at a particular clock rate.
• Clock level tasks divided into two categories;

– Cyclic: these are tasks which require accurate synchronization with outside world.
– Delay: these tasks simply wish to have a fixed delay between successive repetitions or

to delay their activities for a given period of time.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٤

Cyclic Tasks:
• Cyclic tasks are ordered in a priority which reflects the accuracy of timing required for the

task, those which require high accuracy being given the highest priority
• Tasks of lower priority within clock level will have some jitter since they will have to await

completion of the higher-level tasks.
Example:
• Three tasks A, B, and C are required to run at 20 msec, 40 msec and 80 msec intervals. If

the clock interrupt rate is set at 20 msec. if the task priority order is set as A,B,and C with A
as the highest priority.

• The following slid shows task activation diagram for this example in two cases;
• Case (a): Task priorities are: A, B, then C.
• Case (b): Task priorities are: C, A, then B.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٥



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٦

Example:
• Now assume that task C takes 25 msec to complete, task A takes 1 msec and task B takes 6

msec. if task C is allowed to run until completion then the activity diagram is given bellow.
• Task A will be delayed by 11 msec at every fourth invocation.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٧

Task States:
Tasks are in one of four states:
1. Running
2. Ready to Run (but not running)
3. Waiting (for something other than the CPU.)
4. Inactive
• Only one task can be Running at a time

(unless we are using a “multi-core”
CPU).

• A task which is waiting for the CPU is
Ready. When a task has requested I/O
or put itself to sleep, it is Waiting.

• An Inactive task is waiting to be
allowed into the schedule. It is like
Microsoft Word when you are NOT
running it.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٨

Task Descriptor:
• Information about the status of each task is held in a block of memory by the RTOS. This

block is called Task Descriptor (TD), or Task Control Block (TCB) or Task Data Control
(TDC).

• The information is held in the TD will vary from system to system, but will typically consist
of the following:

– Task Identification.
– Task Priority.
– Current state of task.
– Area to store volatile environment (or a pointer to an area for storing the volatile environment).
– Pointer to next task in list.

Example:
The next slide shows list structure for holding task state information:
• There is one active task (task ID=10).
• There are three tasks ready to run (ID=20, ID=9 and ID=6). The entry held in the executive

for the ready queue head points to task 20, which in tern points to task 9 and so on.
• The advantage of the list structure is that the actual TD can be located anywhere in the

memory and hence the OS is not restricted to a fixed number of tasks as the case in older OSs
which used fixed length tables to hold task state information.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ١٩



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٢٠

Resource Control:
• One of the most difficult areas of programming is the transfer of information to and from

external devices. The availability of a well-designed and implemented I/O subsystem
(IOSS) in an OS is essential for efficient programming. This enables programmer to
perform input output by means of system calls either from a HLL or from the assembler.
The IOSS handles all the details of the devices.

• A typical IOSS will be divided into two levels.
• The I/O manager accepts the system calls from

the user tasks and transfers the information
contained in the calls to the device control block
(DCB) for the particular device.

• The information supplied in the call by the user
task will be;

– the location of a buffer area in which the data to be
transferred is stored (o/p) or is to be stored (i/p),

– the amount of data to be transferred,
– type of data,
– direction of transfer, and
– the device to be used.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٢١

Detailed arrangement of IOSS:
• The actual transfer of the data between the user task and the device will be carried out by the

device driver and this segment of code will make use of other information stored in the DCB.
• A separate device driver may be provided for each device.
• A single driver may be shared between several devices, however, each device will require its

own DCB.
• The OS will normally be supplied with DCBs for the more common devices.



Prof. Kasim Al-Aubidy Real-Time Systems, Lect:8 ٢٢

For more information:
1. http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html

2. http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm#D


