
ECE 252 / CPS 220 Lecture Notes
Pipelining

1© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Readings in Pipelining
H+P

• Appendix A (except for A.8)
• This will be mostly review for those who took ECE 152

Recent Research Papers
• “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4

Inverter Delays”, Hrishikesh et al., ISCA 2002.
• “Power: A First Class Design Constraint”, Mudge, IEEE

Computer, April 2001. (not directly related to pipelining)

ECE 252 / CPS 220 Lecture Notes
Pipelining

2© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Basic Pipelining
• basic := single, in-order issue

• single issue := one instruction at a time (per stage)
• in-order issue := instructions (start to) execute in order
• next unit: multiple issue
• unit after that: out-of-order issue

• pipelining principles
• tradeoff: clock rate vs. IPC
• hazards: structural, data, control

• vanilla pipeline: single-cycle operations
• structural hazards, RAW hazards, control hazards

• dealing with multi-cycle operations
• more structural hazards, WAW hazards, precise state

ECE 252 / CPS 220 Lecture Notes
Pipelining

3© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipelining
observe: instruction processing consists of N sequential stages

idea: overlap different instructions at different stages

+ increase resource utilization: fewer stages sitting idle
+ increase completion rate (throughput): up to 1 in 1/N time
• almost every processor built since 1970 is pipelined

• first pipelined processor: IBM Stretch [1962]

non-pipelined

pipelined

inst0.1 inst0.2 inst0.3
inst1.1 inst1.2 inst1.3

inst0.1 inst0.2 inst0.3
inst1.1 inst1.2 inst1.3

ECE 252 / CPS 220 Lecture Notes
Pipelining

4© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Without Pipelining

• 5 parts of instruction execution
• fetch (F, IF): fetch instruction from I$
• decode (D, ID): decode instruction, read input registers
• execute (X, EX): ALU, load/store address, branch outcome
• memory access (M, MEM): load/store to D$/DTLB
• writeback (W, WB): write results (from ALU or ld) back to register file

I$
D$

regfile

DF M WX

+4

nPC

PC

ECE 252 / CPS 220 Lecture Notes
Pipelining

5© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Simple 5-Stage Pipeline

• 5 stages (pipeline depth is 5)
• fetch (F, IF): fetch instruction from I$
• decode (D, ID): decode instruction, read input registers
• execute (X, EX): ALU, load/store address, branch outcome
• memory access (M, MEM): load/store to D$/DTLB
• writeback (W, WB): write results (from ALU or ld) back to register file

• stages divided by pipeline registers/latches

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

+4

ECE 252 / CPS 220 Lecture Notes
Pipelining

6© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipeline Registers (Latches)

• contain info for controlling flow of instructions through pipe
• PC: PC
• F/D: PC, undecoded instruction
• D/X: PC, opcode, regfile[rs1], regfile[rs2], immed, rd
• X/M: opcode (why?), regfile[rs1], ALUOUT, rd
• M/W: ALUOUT, MEMOUT, rd

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

+4

ECE 252 / CPS 220 Lecture Notes
Pipelining

7© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipeline Diagram

Compared to non-pipelined case:
• Better throughput: an instruction finishes every cycle
• Same latency per instruction: each still takes 5 cycles

1 2 3 4 5 6 7 8 ⇐ cycles
inst0 F D X M W
inst1 F D X M W
inst2 F D X M W
inst3 F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

8© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Principles of Pipelining
let: instruction execution require N stages, each takes tn time

• un-pipelined processor
• single-instruction latency T = Σtn
• throughput = 1/T = 1/Σtn
• M-instruction latency = M*T (M>>1)

• now: N-stage pipeline
• single-instruction latency T = Σtn (same as unpipelined)
• throughput = 1/ max(tn) <= N/T (max(tn) is the bottleneck)
 if all tn are equal (i.e., max(tn) = T/N), then throughput = N/T
• M-instruction latency (M >> 1) = M * max(tn) <= M*T/N
• speedup <= N

• can we choose N to get arbitrary speedup?

ECE 252 / CPS 220 Lecture Notes
Pipelining

9© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Wrong (part I): Pipeline Overhead
V := oVerhead delay per pipe stage

• cause #1: latch overhead
• pipeline registers take time

• cause #2: clock/data skew

so, for an N-stage pipeline with overheads
• single-instruction latency T = Σ(V + tn) = N*V + Σtn
• throughput = 1/(max(tn) + V) <= N/T (and <= 1/V)
• M-instruction latency = M*(max(tn) + V) <= M*V + M*T/N
• speedup = T/(V+max(tn)) <= N

Overhead limits throughput, speedup & useful pipeline depth

ECE 252 / CPS 220 Lecture Notes
Pipelining

10© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Wrong (part II): Hazards
hazards: conditions that lead to incorrect behavior if not fixed

• structural: two instructions use same h/w in same cycle
• data: two instructions use same data (register/memory)
• control: one instruction affects which instruction is next

• hazards ⇒ stalls (sometimes)
• stall: instruction stays in same stage for more than one cycle

• what if average stall per instruction = S stages?
• latency’ ⇒ T(N+S)/N = ((N+S)/N)*latency > latency
• throughput’ ⇒ N2/T(N+S) = (N/(N+S))*throughput < throughput
• M_latency’ ⇒ M*T(N+S)/N2 = ((N+S)/N)*M_latency > M_latency
• speedup’ ⇒ N2/(N+S) = (N/(N+S))*speedup < speedup

ECE 252 / CPS 220 Lecture Notes
Pipelining

11© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipelining: Clock Rate vs. IPC
deeper pipeline (more stages, larger N)

+ increases clock rate
– decreases IPC (longer stalls for hazards - will see later)
• ultimate metric is execution rate = clock rate*IPC

• (clock cycle / unit real time) * (instructions / clock cycle)
• number of instructions is fixed, for purposes of this discussion

• how does pipeline overhead factor in?

to think about this, parameterize the clock cycle
• basic time unit is the gate-delay (time to go through a gate)

• e.g., 80 gate-delays to process (fetch, decode,...) an instruction
• let’s look at an example ...

ECE 252 / CPS 220 Lecture Notes
Pipelining

12© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Clock Rate vs. IPC Example
• G: gate-delays to process an instruction
• V: gate-delays of overhead per stage
• S: average cycle stall per instruction per pipe stage

– overly simplistic model for stalls

• compute optimal N (depth) given G, V, S [Smith+Pleszkun]
• IPC = 1 / (1 + S*N)
• clock rate (in gate-delays) = 1/(gate delays/stage) =1/(G/N + O)
• e.g., G = 80, S = 0.16, V = 1

N IPC := 1/(1+0.16*N) clock := 1/(80/N+1) execution rate
10 0.38 0.11 0.042
20 0.24 0.20 0.048
30 0.17 0.27 0.046

ECE 252 / CPS 220 Lecture Notes
Pipelining

13© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipeline Depth Upshot
trend is for deeper pipelines (more stages)

• why? faster clock (higher frequency)
• clock period = f(transistor latency, gate delays per pipe stage)
• superpipelining: add more stages to reduce gate-delays/pipe-stage
• but increased frequency may not mean increased performance...
• who cares? we can sell frequency!

• e.g., Intel IA-32 pipelines
• 486: 5 stages (50+ gate-delays per clock period)
• Pentium: 7 stages
• Pentium II/III: 12 stages
• Pentium 4: 22 stages (10 gate-delays per clock)
• Gotcha! 800MHz Pentium III performs better than 1GHz Pentium 4

ECE 252 / CPS 220 Lecture Notes
Pipelining

14© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Managing the Pipeline
to resolve hazards, need fine pipe-stage control

• play with pipeline registers to control pipe flow
• trick #1: the stall (or the bubble)

• effect: stops SOME instructions in current pipe-stages
• use: make younger instructions wait for older ones to complete
• implementation: de-assert write-enable signals to pipeline registers

• trick #2: the flush
• effect: clears instructions out of current pipe-stages
• use: undoes speculative work that was incorrect (see later)
• implementation: assert clear signals on pipeline registers

• stalls & flushes must be propagated upstream (why?)
• upstream: towards fetch (downstream = towards writeback)

ECE 252 / CPS 220 Lecture Notes
Pipelining

15© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Structural Hazards
two different instructions need same h/w resource in same cycle

• e.g., loads/stores use the same cache port as fetch
• assume unified L1 cache (for this example)

1 2 3 4 5 6 7 8 9 10 11 12 13
load F D X M W
inst2 F D X M W
inst3 F D X M W
inst3 F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

16© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Fixing Structural Hazards
• fix structural hazard by stalling (s* = structural stall)

+ low cost, simple
– decreases IPC
• used rarely

• Q: which one to stall, inst4 or load?
• always safe to stall younger instruction (why?)...
• ...but may not be the best thing to do performance-wise (why?)

1 2 3 4 5 6 7 8 9 10 11 12 13
load F D X M W
inst2 F D X M W
inst3 F D X M W
inst4 s* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

17© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Avoiding Structural Hazards
• option #1: replicate the contended resource

+ good performance
– increased area, slower (interconnect delay)?
• use for cheap, divisible, or highly-contended resources (e.g., I$/D$)

• option #2: pipeline the contended resource
+ good performance, low area
– sometimes complex (e.g., RAM)
• useful for multicycle resources

• option #3: design ISA/pipeline to reduce structural hazards
• key 1: each instruction uses a given resource at most once
• key 2: each instruction uses a given resource in same pipeline stage
• key 3: each instruction uses a given resource for one cycle
• this is why we force ALU operations to go thru MEM stage

ECE 252 / CPS 220 Lecture Notes
Pipelining

18© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Data Hazards
two different instructions use the same storage location

• we must preserve the illusion of sequential execution

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
read-after-write

(RAW)

true dependence
(real)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
write-after-read

(WAR)

anti-dependence
(artificial)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
write-after-write

(WAW)

output dependence
(artificial)

Q: What about read-after-read dependences? (RAR)

ECE 252 / CPS 220 Lecture Notes
Pipelining

19© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

RAW
read-after-write (RAW) = true dependence (dataflow)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• problem: sub reads R1 before add has written it
• Pipelining enables this overlapping to occur
• But this violates sequential execution semantics!
• Recall: user just sees ISA and expects sequential execution

ECE 252 / CPS 220 Lecture Notes
Pipelining

20© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

RAW: Detect and Stall
detect RAW and stall instruction at ID before it reads registers

• mechanics? disable PC, F/D write
• RAW detection? compare register names

• notation: rs1(D) := source register #1 of instruction in D stage
• compare rs1(D) and rs2(D) with rd(D/X), rd(X/M), rd(M/W)
• stall (disable PC + F/D, clear D/X) on any match

• RAW detection? register busy-bits
• set for rd(D/X) when instruction passes ID
• clear for rd(M/W)
• stall if rs1(D) or rs2(D) are “busy”

+ low cost, simple
– low performance (many stalls)

ECE 252 / CPS 220 Lecture Notes
Pipelining

21© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

depend on how ID and WB stages share the register file
• each gets register file for half a cycle
• 1st half ID reads, 2nd half WB writes ⇒ 3 cycle stall

• 1st half WB writes, 2nd half ID reads ⇒ 2 cycle stall

1 2 3 4 5 6 7 8 9
add R1,R2,R3 F D X M W
sub R2,R4,R1 F d* d* d* D X M W
load R5,R6,R7 p* p* p* F D X M

1 2 3 4 5 6 7 8 9
add R1,R2,R3 F D X M W
sub R2,R4,R1 F d* d* D X M W

Two Stall Timings

ECE 252 / CPS 220 Lecture Notes
Pipelining

22© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Stall Signal Example (2nd Timing)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
load r2,0(r3)add r4,r2,r1 add r5,r5,#4 call funcload r6,0(r4)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1 add r5,r5,#4load r6,0(r4)

write disable write disable clear

write disable write disable clear

load r2,0(r3)

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1load r6,0(r4) load r2,0(r3)

c1: rs1(D) == rd(D/X) ⇒ stall

c2: rs1(D) == rd(X/M) ⇒ stall

c3: rs1(D) == rd(X/M) ⇒ go

F

PC

D

F/D

X

D/X

M

X/M

W

M/W
add r4,r2,r1load r6,0(r4)sub r6,r6,#1

RAW

ECE 252 / CPS 220 Lecture Notes
Pipelining

23© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Reducing RAW Stalls: Bypassing

why wait until WB stage? data available at end of EX/MEM stage
• bypass (aka “forward”) data directly to input of EX
+ very effective at reducing/avoiding stalls

• in practice, a large fraction of input operands are bypassed (why?)

– complex
• does not relieve you from having to perform WB

D$

regfile

M WX

D/X X/M M/W

ECE 252 / CPS 220 Lecture Notes
Pipelining

24© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Implementing Bypassing

• first, detect bypass opportunity
• tag compares in D/X latch
• similar to but separate from stall logic in F/D latch

• then, control bypass MUX
• if rs2(X) == rd(X/M) then ALUOUT(M)
• else if rs2(X) == rd(M/W) then ALUOUT(W)

D$

regfile

M WX

D/X X/M M/W

ECE 252 / CPS 220 Lecture Notes
Pipelining

25© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Pipeline Diagrams with Bypassing

• even with full bypassing, not all RAW stalls can be avoided
• example: load to ALU in consecutive cycles

1 2 3 4 5 6 7 8 9 10 11
add R1,R5,R3 F D X M W
sub R2,R4,R1 F D X M W example 1

1 2 3 4 5 6 7 8 9 10 11
load R1,24(R5) F D X M W
add R3,R6,R7 F D X M W
sub R2,R4,R1 F D X M W example 2

1 2 3 4 5 6 7 8 9 10 11
load R1,24(R5) F D X M W
sub R2,R4,R1 F D d* X M W example 3

ECE 252 / CPS 220 Lecture Notes
Pipelining

26© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

before
load R2, b
load R3, c
add R1, R2, R3 //stall
store R1, a
load R5, e
load R6, f
sub R4, R5, R6 // stall
store R4, d

Pipeline Scheduling
compiler schedules (moves) instructions to reduce stall

• eliminate back-to-back load-ALU scenarios
• example code sequence a = b + c; d = e - f

after
load R2, b
load R3, c
load R5, e
add R1, R2, R3 // no stall
load R6, f
store R1, a
sub R4, R5, R6 // no stall
store Rd, d

ECE 252 / CPS 220 Lecture Notes
Pipelining

27© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAR: Write After Read
write-after-read (WAR) = artificial (name) dependence

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• problem: add could use wrong value for R2
• can’t happen in vanilla pipeline (reads in ID, writes in WB)

• can happen if: early writes (e.g., auto-increment) + late reads (??)
• can happen if: out-of-order reads (e.g., out-of-order execution)

• artificial: using different output register for sub would solve
• The dependence is on the name R2, but not on actual dataflow

ECE 252 / CPS 220 Lecture Notes
Pipelining

28© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAW: Write After Write
write-after-write (WAW) = artificial (name) dependence
add R1,R2,R3
sub R2,R4,R1
or R1,R6,R3

• problem: reordering could leave wrong value in R1
• later instruction that reads R1 would get wrong value

• can’t happen in vanilla pipeline (register writes are in order)
• another reason for making ALU ops go through MEM stage
• can happen: multi-cycle operations (e.g., FP, cache misses)

• artificial: using different output register for or would solve
• Also a dependence on a name: R1

ECE 252 / CPS 220 Lecture Notes
Pipelining

29© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

RAR: Read After Read
read-after-read (RAR)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• no problem: R3 is correct even with reordering

ECE 252 / CPS 220 Lecture Notes
Pipelining

30© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Memory Data Hazards
have seen register hazards, can also have memory hazards

RAW
store R1,0(SP)
load R4,0(SP)

WAR
load R4,0(SP)
store R1,0(SP)

WAW
store R1,0(SP)
store R4,0(SP)

• in simple pipeline, memory hazards are easy
• in-order
• one at a time
• read & write in same stage

• in general, though, more difficult than register hazards

1 2 3 4 5 6 7 8 9
store R1,0(SP) F D X M W
load R1,0(SP) F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

31© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Hazards vs. Dependences
dependence: fixed property of instruction stream (i.e., program)

hazard: property of program and processor organization
• implies potential for executing things in wrong order

• potential only exists if instructions can be simultaneously “in-flight”
• property of dynamic distance between instrs vs. pipeline depth

For example, can have RAW dependence with or without hazard
• depends on pipeline

ECE 252 / CPS 220 Lecture Notes
Pipelining

32© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards
when an instruction affects which instruction executes next
store R4,0(R5)
bne R2,R3,loop
sub R1,R6,R3

• naive solution: stall until outcome is available (end of EX)
+ simple
– low performance (2 cycles here, longer in general)
• e.g. 15% branches * 2 cycle stall ⇒ 30% CPI increase!

1 2 3 4 5 6 7 8 9
store R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

33© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: “Fast” Branches
fast branches: can be evaluated in ID (rather than EX)

+ reduce stall from 2 cycles to 1

– requires more hardware
• dedicated ID adder for (PC + immediate) targets

– requires simple branch instructions
• no time to compare two registers (would need full ALU)
• comparisons with 0 are fast (beqz, bnez)

1 2 3 4 5 6 7 8 9
sw R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

34© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: Delayed Branches
delayed branch: execute next instruction whether taken or not

• instruction after branch said to be in “delay slot”
• old microcode trick stolen by RISC (MIPS)

store R4,0(R5)
bne R2,R3,loop
sub R1,R6,R6

bned R2,R3,loop
store R4,0(R5)
sub R1,R6,R6

1 2 3 4 5 6 7 8 9
bned R2,R3,loop F D X M W
store R4,0(R5) F D X M W
sub R1,R6,R6 c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

35© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

What To Put In Delay Slot?
• instruction from before branch

• when? if branch and instruction are independent
• helps? always

• instruction from target (taken) path
• when? if safe to execute, but may have to duplicate code
• helps? on taken branch, but may increase code size

• instruction from fall-through (not-taken) path
• when? if safe to execute
• helps? on not-taken branch

• upshot: short-sighted ISA feature
– not a big win for today’s machines (why? consider pipeline depth)
– complicates interrupt handling (later)

ECE 252 / CPS 220 Lecture Notes
Pipelining

36© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: Speculative Execution
idea: doing anything is better than waiting around doing nothing

• speculative execution
• guess branch target ⇒ start executing at guessed position
• execute branch ⇒ verify (check) guess
+ minimize penalty if guess is right (to zero?)
– wrong guess could be worse than not guessing

• branch prediction: guessing the branch
• one of the “important” problems in computer architecture
• very heavily researched area in last 15 years
• static: prediction by compiler
• dynamic: prediction by hardware
• hybrid: compiler hints to hardware predictor

ECE 252 / CPS 220 Lecture Notes
Pipelining

37© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

The Speculation Game
speculation: engagment in risky business transactions on the
chance of quick or considerable profit

• speculative execution (control speculation)
• execute before all parameters known with certainty

+ correct speculation
+ avoid stall/get result early, performance improves

– incorrect speculation (mis-speculation)
– must abort/squash incorrect instructions
– must undo incorrect changes (recover pre-speculation state)

• the speculation game: profit > penalty
• profit = speculation accuracy * correct-speculation gain
• penalty = (1–speculation accuracy) * mis-speculation penalty

ECE 252 / CPS 220 Lecture Notes
Pipelining

38© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Speculative Execution Scenarios
1 2 3 4 5

inst0/B F D X M W
inst8 F D X M
inst9 F D X
inst10 F D

1 2 3 4 5
inst0/B F D X M W
inst1 F D
inst2 F
inst8 verify/flush F D

• correct speculation
• cycle1: fetch branch, predict next (inst8)
• c2, c3: fetch inst8, inst9
• c3: execute/verify branch ⇒ correct
• nothing needs to be fixed or changed

• incorrect speculation: mis-speculation
• c1: fetch branch, predict next (inst1)
• c2, c3: fetch inst1, inst2
• c3: execute/verify branch ⇒ wrong
• c3: send correct target to IF (inst8)
• c3: squash (abort) inst1, inst2 (flush F/D)
• c4: fetch inst8

ECE 252 / CPS 220 Lecture Notes
Pipelining

39© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Static (Compiler) Branch Prediction
Some static prediction options

• predict always not-taken
+ very simple, since we already know the target (PC+4)
– most branches (~65%) are taken (why?)

• predict always taken
+ better performance
– more difficult, must know target before branch is decoded

• predict backward taken
• most backward branches are taken

• predict specific opcodes taken
• use profiles to predict on per-static branch basis

• pretty good

ECE 252 / CPS 220 Lecture Notes
Pipelining

40© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Comparison of Some Static Schemes
CPI-penalty = %branch * [(%T * penaltyT) + (%NT * penaltyNT)]

• simple branch statistics
• 14% PC-changing instructions (“branches”)
• 65% of PC-changing instructions are “taken”

scheme penaltyT penaltyNT CPI penalty
stall 2 2 0.28

fast branch 1 1 0.14
delayed branch 1.5 1.5 0.21

not-taken 2 0 0.18
taken 0 2 0.10

ECE 252 / CPS 220 Lecture Notes
Pipelining

41© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Dynamic Branch Prediction

hardware (BP) guesses whether and where a branch will go
0x64 bnez r1,#10
0x74 add r3,r2,r1

• start with branch PC (0x64) and produce
• direction (Taken)
• direction + target PC (0x74)
• direction + target PC + target instruction (add r3, r2,r1)

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

BP
I$

ECE 252 / CPS 220 Lecture Notes
Pipelining

42© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch History Table (BHT)
branch PC ⇒ prediction (T, NT)

– need decoder/adder to compute target if taken
• branch history table (BHT)

• read prediction with least significant bits (LSBs) of branch PC
• change bit on misprediction
+ simple
– multiple PCs may map to same bit (aliasing)

• major improvements
• two-bit counters [Smith]
• correlating/two-level predictors [Patt]
• hybrid predictors [McFarling]

branch PC

BHT
1
0
1

T/N

ECE 252 / CPS 220 Lecture Notes
Pipelining

43© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Improvement: Two-bit Counters
example: 4-iteration inner loop branch

– problem: two mis-predictions per loop
• solution: 2-bit saturating counter to implement hysteresis

• 4 states: strong/weak not-taken (N/n), strong/weak taken (T/t)
• transitions: N ⇔ n ⇔ t ⇔ T

+ only one mis-prediction per iteration

state/prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * * * *

state/prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * *

ECE 252 / CPS 220 Lecture Notes
Pipelining

44© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Improvement: Correlating Predictors
different branches may be correlated

• outcome of branch depends on outcome of other branches
• makes intuitive sense (programs are written this way)

• e.g., if the first two conditions are true, then third is false
if (aa == 2) aa = 0;
if (bb == 2) bb = 0;
if (aa != bb) { . . . }

revelation: prediction = f(branch PC, recent branch outcomes)
• revolution: BP accuracies increased dramatically
• lots of reseach in designing that function for best BP

ECE 252 / CPS 220 Lecture Notes
Pipelining

45© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Correlating (Two-Level) Predictors
• branch history shift register (BHR) holds recent outcomes

• combination of PC and BHR accesses BHT
• basically, multiple predictions per branch, choose based on history

design space
• number of BHRs

• multiple BHRs (“local”, Intel)
• 1 global BHR (“global”, everyone else)

• PC/BHR overlap
• full, partial, none (concatenated?)

• popular design: Gshare [McFarling]
• 1 global BHR, full overlap, f = XOR

branch PC

f

BHT

BHR

T/N

ECE 252 / CPS 220 Lecture Notes
Pipelining

46© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Correlating Predictor Example
• example with alternating T,N (1-bit BHT, no correlation)

• add 1 1-bit BHR, concatenate with PC
• effectively, two predictors per PC
• top (BHR=N) bottom (BHR=T) active entry

state/prediction N T N T N T N T N T N T
branch outcome T N T N T N T N T N T N
mis-prediction? * * * * * * * * * * * *

state/prediction N
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

branch outcome T N T N T N T N T N T N
mis-prediction? *

ECE 252 / CPS 220 Lecture Notes
Pipelining

47© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Hybrid/Competitive/Tournament Predictors
observation: different schemes work better for different branches

idea: multiple predictors, choose on per static-branch basis

mechanics
• two (or more) predictors
• chooser

• if chosen predictor is wrong...
• ...and other is right...
• ...flip chooser

• popular design: Gselect [McFarling]
• Gshare + 2-bit saturating counter BHR

branch PC

f

ch
oo

se
r

pr
ed

ic
to

r 1

pr
ed

ic
to

r 2

ECE 252 / CPS 220 Lecture Notes
Pipelining

48© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch Target Buffer (BTB)
branch PC ⇒ target PC

• target PC available at end of IF stage
+ no bubble for correct predictions

• branch target buffer (BTB)
• index: branch PC
• data: target PC (+ T/NT?)
• tags: branch PC (why are tags needed here and not in BHT?)
– many more bits per entry than BHT
• considerations: combine with I-cache? store not-taken branches?

• branch target cache (BTC)
• data: target PC + target instruction(s)
• enables “branch folding” optimization (branch removed from pipe)

ECE 252 / CPS 220 Lecture Notes
Pipelining

49© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Jump Prediction
exploit behavior of different kinds of jumps to improve prediction

• function returns
• use hardware return address stack (RAS)
• call pushes return address on top of RAS
• for return, predict address at top of RAS and pop
– trouble: must manage speculatively

• indirect jumps (switches, virtual functions)
• more than one taken target per jump
• path-based BTB [Driesen+Holzle]

ECE 252 / CPS 220 Lecture Notes
Pipelining

50© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch Issues
issue1: how do we know at IF which instructions are branches?

• BTB: don’t need to “know”
• check every instruction: BTB entry ⇒ instruction is a branch

issue2: BHR (RAS) depend on branch (call) history
• when are these updated?

• at WB is too late (if another branch is in-flight)
• at IF (after prediction)
• must be able to recover BHR (RAS) on mis-speculation (nasty)

ECE 252 / CPS 220 Lecture Notes
Pipelining

51© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Adding Multi-Cycle Operations
RISC tenet #1: “single-cycle operations”

• why was this such a big deal?
• fact: not all operations complete in 1 cycle

• FP add, int/FP multiply: 2–4 cycles, int/FP divide: 20–50 cycles
• data cache misses: 10–150 cycles!

• slow clock cycle down to slowest operation?
– can’t without incurring huge performance loss

• solution: extend pipeline - add pipeline stages to EX

ECE 252 / CPS 220 Lecture Notes
Pipelining

52© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Extended Pipeline

• separate integer/FP, pipe register files
• loads/stores in integer pipeline only (why?)

• additional, parallel functional units
• E+: FP adder (2 cycles, pipelined)
• E*: FP/integer multiplier (4 cycles, pipelined)
• E/: FP/integer divider (20 cycles, not pipelined)

I$

int RF

D
F

M WX
F/D

D/X X/M M/W
PC D$

FP RF
W

FP+ FP+
E+

ECE 252 / CPS 220 Lecture Notes
Pipelining

53© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Multi-Cycle Example

• write-after-write (WAW) hazards
• register write port structural hazards
• functional unit structural hazards
• elongated read-after-write (RAW) hazards

1 2 3 4 5 6 7 8 9 10
divf f0,f1,f2 F D E/ E/ E/ E/ W
mulf f0,f3,f4 F D E* E* W
addf f5,f6,f7 F D E+ E+ W
subf f8,f6,f7 F D * E+ E+ W
mulf f9,f8,f7 F D * * E* E*

ECE 252 / CPS 220 Lecture Notes
Pipelining

54© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Another Multi-Cycle Example
example: SAXPY (math kernel)
Z[i] = A*X[i] + Y[i] // single precision

1 2 3 4 5 6 7 8 9 10
ldf f2,0(r1) F D X M W
mulf f6,f0,f2 F D d* E* E* E* E* W
ldf f4,0(r2) F p* D X M W
addf f8,f6,f4 F D d* d* E+ E+ W
stf f8,0(r3) F p* p* D X M W
add r1,r1,#4 F D X M W
add r2,r2,#4 F D X M W
add r3,r3,#4 F D X M W

f6

ECE 252 / CPS 220 Lecture Notes
Pipelining

55© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Register Write Port Structural Hazards
where are these resolved?

• multiple writeback ports?
– not a good idea (why not?)

• in ID?
• reserve writeback slot in ID (writeback reservation bits)
+ simple, keeps stall logic localized to ID stage
– won’t work for cache misses (why not?)

• in MEM?
+ works for cache misses, better utilization
– two stall controls (F/D and M/W) must be synchronized

• in general: cache misses are hard
• don’t know in ID whether they will happen early enough (in ID)

ECE 252 / CPS 220 Lecture Notes
Pipelining

56© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAW Hazards
how are these dealt with?

• stall younger instruction writeback?
+ intuitive, simpler
– lower performance (cascading writeback structural hazards)

• abort (don’t do) older instruction writeback?
+ no performance loss
– but what if intermediate instruction causes an interrupt (next)

ECE 252 / CPS 220 Lecture Notes
Pipelining

57© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Dealing With Interrupts
interrupts (aka faults, exceptions, traps)

• e.g., arithmetic overflow, divide by zero, protection violation
• e.g., I/O device request, OS call, page fault

classifying interrupts
• terminal (fatal) vs. restartable (control returned to program)
• synchronous (internal) vs. asynchronous (external)
• user vs. coerced
• maskable (ignorable) vs. non-maskable
• between instructions vs. within instruction

ECE 252 / CPS 220 Lecture Notes
Pipelining

58© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Precise Interrupts
“unobserved system can exist in any intermediate state, upon
observation system collapses to well-defined state”

–2nd postulate of quantum mechanics

• system ⇒ processor, observation ⇒ interrupt

what is the “well-defined” state?
• von Neumann: “sequential, instruction atomic execution”
• precise state at interrupt

• all instructions older than interrupt are complete
• all instructions younger than interrupt haven’t started

• implies interrupts are taken in program order
• necessary for VM (why?), “highly recommended” by IEEE

ECE 252 / CPS 220 Lecture Notes
Pipelining

59© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Interrupt Example: Data Page Fault

• squash (effects of) younger instructions
• inject fake TRAP instruction into IF
• from here, like a SYSCALL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
inst0 F D X M W
inst1 F D X M page fault
inst2 F D X
inst3 F D restart faulting instruction
inst4 F
TRAP F D X M W
trap0 flush EX, ID,IF F D X M W
inst1 inject TRAP instr OS trap handler F D X M

ECE 252 / CPS 220 Lecture Notes
Pipelining

60© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

More Interrupts
• interrupts can occur at different stages

• IF, MEM: page fault, misaligned data, protection violation
• ID: illegal/privileged instruction
• EX: arithmetic exception

• too complicated to draw what goes on here
• cycle2: instruction page fault, flush inst1, inject TRAP
• c4: data page fault, flush inst0, inst1, TRAP
– can get into an infinite loop here (with help of OS page placement)

1 2 3 4 5 6 7 8 9
inst0 F D X M W data page fault
inst1 F D X M W instruction page fault

ECE 252 / CPS 220 Lecture Notes
Pipelining

61© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Posted Interrupts
posted interrupts

• set interrupt bit when condition is raised
• check interrupt bit (potentially “take” interrupt) in WB

+ interrupts are taken in order
– longer latency, more complex

• what happens now?
• c2: set inst1 bit
• c4: set inst0 bit
• c5: take inst0 interrupt

1 2 3 4 5 6 7 8 9
inst0 F D X M W data page fault
inst1 F D X M W instruction page fault

ECE 252 / CPS 220 Lecture Notes
Pipelining

62© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Interrupts and Multi-Cycle Operations

multi-cycle operations + precise state = trouble
• #1: how to undo early writes?

• e.g., must make it seem as if mulf hasn’t executed
• undo writes: future file, history file -> ugly!

• #2: how to take interrupts in-order if WB is not in-order?
• force in-order WB
– slow

1 2 3 4 5 6 7 8 9 10 11
divf f0,f1,f2 F D E/ E/ E/ E/ W div by 0 (posted)
mulf f3,f4,f5 F D E* E* W
addf f6,f7,f8 F D E+ E+ s* W

ECE 252 / CPS 220 Lecture Notes
Pipelining

63© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Interrupts Are Nasty
• odd bits of state must be precise (e.g., CC)
• delayed branches

• what if instruction in delay slot takes an interrupt?

• modes with early-writes (e.g., auto-increment)
• must undo write (e.g., future-file, history-file)

• some machines had precise interrupts only in integer pipe
• sufficient for implementing VM
• e.g., VAX/Alpha

Lucky for us, there’s a nice, clean way to handle precise state
• We’ll see how this is done in a couple of lectures ...

ECE 252 / CPS 220 Lecture Notes
Pipelining

64© 2005 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Summary
• principles of pipelining

• pipeline depth: clock rate vs. number of stalls (CPI)

• hazards
• structural
• data (RAW, WAR, WAW)
• control

• multi-cycle operations
• structural hazards, WAW hazards

• interrupts
• precise state

next up: dynamic ILP (chapter 3)

