Philadelphia University

Faculty of Engineering

Student Name: Student Number:
 Serial Number:

First Exam, Second Semester: 2018/2019
Dept. of Computer Engineering

Course Title:	Microprocessors	Date:	$02 / 04 / 2019$
Course No:	0630313	Time Allowed:	50 minutes
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	3

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 5 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
Basic notions: The aim of the questions in this part is to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of basic concepts of IA-32 Processor Architecture, Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions.

Question 1 Multiple Choices

Identify the choice that best completes the statement or answers the question.

1) During which phase of the instruction execution cycle is the program counter (IP register) incremented?
a) decode
b) execute
c) operand fetch
d) fetch
2) The size of each segment in $\mathbf{8 0 8 6}$ is
a) 16 kb
b) 24 kb
c) $\quad 50 \mathrm{~kb}$
d) 64 kb
3) The Overflow flag is based on signed arithmetic.
a) True
b) False
4) Which of these values is the most acceptable for the data type REAL4?
a)
1275
b)
'Q'
c) $\quad 23.26$
d) "Jennifer",0
5) One of the following memory models combines the data and code parts:
a) Small
b) Tiny
c) Meduim
d) Huge

Explain the Real-Address Mode Programming (16-bit MS-DOS Programs): Advantages, Disadvantages and Requirements needed in your assembly code.

Solution

Question 3

Use the following data definitions:

bytel	BYTE	OFFh,1,2
byte2	BYTE	14h
word1	WORD	OFFFFh,1,2
word2	WORD	3
word3	SWORD	7FFFh, 8000h

a) For each of the following instructions, indicate whether it is legal (L) or illegal (I):

\tilde{N}	Instruction	Answer
1)	mov wordl, byte2	
2)	mov word2,10000h	
3)	mov si, ds	
4)	movzx ax, bytel	
5)	movsx dl, al	

b) Indicate the hexadecimal value of the destination operand next to each instruction. Use the letter \mathbf{I} to indicate that a particular instruction is illegal:

mov dx, word3	DX = -------------
movsx eax,bytel	EAX = -----------
mov dh, al	DH = -------------
mov ax, [word3+2]	AX $=\cdots---{ }^{-}$
mov eax, [word3+4]	EAX $=$

MASMI can't assemble this program because of some errors. Rewrite the program to be assembled without errors.

Original Program	Your answer
INCLUDE irvine32.inc	
.data	
arrayA word 4Ah, 3Ch, 2h, 5 DUP (1h)	
varl word ffffh	
.code	
main PROC	
mov cx,4Ch	
xchg cx, arrayA+4	
mov ax, arrayA+5	
mov bl, varl	
add ax, bx	
call dumpregs	
exit	
main ENDP	

Question 5
Write a complete assembly language program that:

- Declares uninitialized variables: Signed word integers J, K and L
- Declares uninitialized variables: Unsigned word integers U1, U3 and U3
- Assign the following variables with values: $\mathbf{J = 3 ; \mathbf { K } = \mathbf { 2 } ; \mathbf { U 1 } = \mathbf { 2 5 4 } ; \mathbf { U } \mathbf { 2 } = \mathbf { 2 2 } \text { (In code segment) } { } ^ { \text { - } } \text { (}}$
- Compute $\mathbf{L}=\mathbf{J}+\mathbf{K}$ and $\mathbf{U 3}=\mathbf{U 1} \mathbf{+} \mathbf{U} \mathbf{2}$

Solution

