Student Name:
 Student Number:
 Serial Number:

Final Exam, First Semester: 2019/2020
Dept. of Computer Engineering

Course Title:	Logic Circuits	Date:	$28 / 01 / 2020$
Course No:	$\mathbf{6 3 0 2 1 1}$	Time Allowed:	2 hours
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	8

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 6 questions totaling 40 marks
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
Basic notions: The aims of the questions in this part are to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of basic concepts: Digital Systems, Binary Number Systems, Boolean Algebra, Basic Logic Gates, Boolean Expression Simplification, Karnaugh Maps, Combinational and Sequential Circuits.

Question 1 Multiple Choice

(10 marks)
Identify the choice that best completes the statement or answers the question.

1) The binary number 101110101111010 can be written in octal as \qquad .
a) 51562_{8}
b) 56577_{8}
c) 56572_{8}
d) $\quad 65627_{8}$
2) The excess- $\mathbf{3}$ code of decimal number $\mathbf{2 6}$ is:
a) 01001101
b) 01001001
c) 10001001
d) 01011001
3) In the circuit shown below, which logic function does this circuit generate?

a) $\quad O R$
b) AND
c) NOR
d) NAND
4) The dual of the Boolean function $\boldsymbol{x}+\boldsymbol{y z}$ is:
a) $\bar{x}(\bar{y}+\bar{z})$
b) $\quad x(y+z)$
c) $x+y z$
d) $\bar{x}+\bar{y} \bar{z}$
5) Applying DeMorgan's theorem to the expression $\overline{\overline{(\boldsymbol{X}+\boldsymbol{Y})}}+\overline{\bar{Z}}$, we get \qquad
a) $\quad(X+Y) Z$
b)
$(\bar{X}+\bar{Y}) \bar{Z}$
c) $\quad(\bar{X}+\bar{Y}) Z$
d) $(X+Y) \bar{Z}$
6) The K-map for a Boolean function is shown in the figure. The number of essential prime implicants for this function is

$C{ }^{\text {A }}$	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	1	0	0	0
10	1	0	0	1

a) 4
b) 5
c) 6
d) 8
7) Any combinational circuit can be built using

1. NAND gates.
2. NOR gates.
3. EX-OR gates.
4. Multiplexers.

Which of these are correct?
a) 1, 2 and 3
b) 1, 3 and 4
c) 2,3 and 4
d) 1,2 and 4
8) Refer to the following figure, If $\mathbf{S}_{\mathbf{1}}=\mathbf{l}$ and $\mathbf{S}_{\mathbf{2}}=\mathbf{0}$ what will be the logic state at the output \mathbf{X} ?

9) PRESET and CLEAR inputs are normally synchronous.
a) True
b) False
10) When designing the circuit with the state table shown below using $\mathbf{J K}$ flip flops, then $\mathbf{J}_{\boldsymbol{A}}=\ldots, \mathbf{K}_{\boldsymbol{A}}=\ldots$.

Present State		Input						Next State		JA		KA
\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{A}	\mathbf{B}								
0	0	0	0	0								
0	0	1	0	1								
0	1	0	1	0								
0	1	1	0	1								
1	0	0	1	0								
1	0	1	1	1								
1	1	0	1	1								
1	1	1	0	0								

a) $\mathrm{J}_{\mathrm{A}}=\mathbf{B}^{\prime} \cdot \mathbf{x}^{\prime}, \mathbf{K}_{\mathrm{A}}=\mathrm{A}^{\prime}$
b) $\mathrm{J}_{\mathrm{A}}=\mathbf{B} . \boldsymbol{x}, \mathrm{K}_{\mathrm{A}}=\mathrm{A}$
c) $\quad \mathbf{J}_{\mathbf{A}}=\mathbf{B X}, \mathbf{K}_{\mathrm{A}}=\mathbf{A}$ '
d) $\mathrm{J}_{\mathbf{A}}=\mathbf{B} . \mathbf{x}^{\prime}, \mathrm{K}_{\mathrm{A}}=\mathbf{B} . \boldsymbol{x}$

Familiar and Unfamiliar Problems Solving: The aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Combinational and Sequential Circuits and Analysis of Sequential Circuits.
a) Simplify the Boolean expression using Boolean algebra.

Solution

b) The logic circuit below has three inputs, $\boldsymbol{X}, \boldsymbol{Y}$, and \boldsymbol{Z}, and two outputs, \boldsymbol{F} and \boldsymbol{G}. Find the minterm list and maxterm list representations for the outputs \boldsymbol{F} and \boldsymbol{G}.

Solution

Using the following table (Binary Code and Gray Code), do the following:
Design a Binary-to-Gray code converter using any available method to minimize the logic and implement the logic circuit using XOR circuits.

Binary Code				Gray Code			
B3	B2	B1	B0	G3	G2	G1	G0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Solution

b) Draw the waveforms at outputs \boldsymbol{Q} and $\overline{\boldsymbol{Q}}$ for the following logic circuit, assume the initial value of \boldsymbol{Q} is logic 1:

c) Draw Three-bit asynchronous binary counter using JK flip flops and its timing diagram for one cycle.
(2.5 marks)

Analyze the following sequential circuit by
a) Write down the state equations.
(1.5 marks)
b) Write down the output equations.
(0.5 mark)
c) Write down the state table for the sequential circuit.
(1.5 marks)
d) Draw the state diagram for the sequential circuit.

Solution

Design a 3-bit counter, which counts in the sequence:
P $001 \rightarrow 011 \rightarrow 010 \rightarrow 110 \rightarrow 111 \rightarrow 101$

Use clocked T flip-flops
Solution

