Dr. Qadri Hamarsheh

e p e

o — .

Mjﬂﬁ& VSR
LeCIurey

Supervised Learning in Neural Networks
(Part 3)

Supervised Learning in Neural Networks — using matlab

e The MATLAB® Neural Network Toolbox implements some of the most
popular training algorithms, which encompass both original gradient-
descent and faster training methods.

e Batch Gradient Descent (traingd):

o Original but the slowest.

o Weights and biases updated in the direction of the negative gradient.

o Selected by setting trainFcn to traingd:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingd’);

e Batch Gradient Descent with Momentum (traingdm):

o Faster convergence than traingd.

o Momentum allows the network to respond not only the local gradient,
but also to recent trends in the error surface.

o Momentum allows the network to ignore small features in the error
surface; without momentum a network may get stuck in a shallow
local minimum.

o Selected by setting trainFcn to traingdm:

net = newff (minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingdm’);

o Faster Training.

e The MATLAB® Neural Network Toolbox also implements some of the faster
training methods, in which the training can converge from ten to one
hundred times faster than traingd and traingdm.

o These faster algorithms fall into two categories:

1. Heuristic techniques: developed from the analysis of the
performance of the standard gradient descent algorithm, e.g.
traingda, traingdx and trainrp.

2. Numerical optimization techniques: make use of the standard
optimization techniques, e.g. conjugate gradient (traincgf,
traincgb, traincgp, trainscg), quasi-Newton (trainbfg, trainoss),
and Levenberg-Marquardt (trainlm).



Dr. Qadri Hamarsheh

e p e

~
TS
Comparison of Training Algorithms
Training Algn-rithms ) Comments
traingd Gradient Descent (GD) Original but slowest
traingdm | GD with momentum Faster than traingd

traingda | GD with adaptive o

Faster than traingd, but can use

- GD with adaptive a and with for batch mode onlv.
traingdx momentum Y
trainrp Resilient Backpropagation Fast convergence

traincgf Fletcher-Reeves Update

traincgp | Polak-Ribiére Update Conjugate Gradient Algorithms
traincgb | Powell-Beale Restarts with fast convergence

trainscg | Scaled Conjugate Gradient

trainbfg BFGS algorithm Quasi-Newton Algorithms with
fast convergence

trainoss | One Step Secant algorithm

Fastest training. Memory

trainim Levenberg-Marquardt e e

trainbr Bayesian regularization Improve generalization capability

Modeling Logical XOR Function
e The XOR solving problem using a simple backpropagation network

X Y XXORY
0 0 0 v
0 1 1 \
1 0 1 o111 ol
I}
1 1 0 P
4 - =
I’ U
P, P, a , ,
0 0 0 Sl ]
—
0 1 0 LD S
[N s X
1 0 0
1 1 1

% Solution:

% Define the training inputs and targets

p=[0011;0101];

t=[0001];

% Create the backpropagation network

net = newff(minmax(p), [4 1], {‘logsig’, ‘logsig’}, ‘traingdx’);

% Train the backpropagation network

net.trainParam.epochs = 500; % training stops if epochs reached
net.trainParam.show = 1; % plot the performance function at every epoch
net = train(net, p, t);

% Testing the performance of the trained backpropagation network
a = sim(net, p)

>>a=0.0002 0.0011 0.0001 0.9985

>>t=0 0 0 1



