
Dr. Qadri Hamarsheh

1

Supervised Learning in Neural Networks

(Part 3)

Supervised Learning in Neural Networks – using matlab

 The MATLAB® Neural Network Toolbox implements some of the most

popular training algorithms, which encompass both original gradient-

descent and faster training methods.

 Batch Gradient Descent (traingd):

o Original but the slowest.

o Weights and biases updated in the direction of the negative gradient.
o Selected by setting trainFcn to traingd:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingd’);

 Batch Gradient Descent with Momentum (traingdm):

o Faster convergence than traingd.

o Momentum allows the network to respond not only the local gradient,

but also to recent trends in the error surface.

o Momentum allows the network to ignore small features in the error

surface; without momentum a network may get stuck in a shallow

local minimum.

o Selected by setting trainFcn to traingdm:
net = newff (minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingdm’);

o Faster Training.

 The MATLAB® Neural Network Toolbox also implements some of the faster

training methods, in which the training can converge from ten to one

hundred times faster than traingd and traingdm.

o These faster algorithms fall into two categories:
1. Heuristic techniques: developed from the analysis of the

performance of the standard gradient descent algorithm, e.g.
traingda, traingdx and trainrp.

2. Numerical optimization techniques: make use of the standard

optimization techniques, e.g. conjugate gradient (traincgf,

traincgb, traincgp, trainscg), quasi-Newton (trainbfg, trainoss),

and Levenberg-Marquardt (trainlm).

Dr. Qadri Hamarsheh

2

Comparison of Training Algorithms

Modeling Logical XOR Function

 The XOR solving problem using a simple backpropagation network

%Solution:

% Define the training inputs and targets

p = [0 0 1 1; 0 1 0 1];

t = [0 0 0 1];

% Create the backpropagation network

net = newff(minmax(p), [4 1], {‘logsig’, ‘logsig’}, ‘traingdx’);

% Train the backpropagation network

net.trainParam.epochs = 500; % training stops if epochs reached

net.trainParam.show = 1; % plot the performance function at every epoch

net = train(net, p, t);

% Testing the performance of the trained backpropagation network

a = sim(net, p)

>> a = 0.0002 0.0011 0.0001 0.9985

>> t = 0 0 0 1

