Supervised Learning in Neural Networks (Part 4)

Hopfield Networks

- Neural networks were designed by analogy with the brain. The brain's memory, however, works by association.
- Multilayer neural networks trained with the back-propagation algorithm are used for pattern recognition problems. However, to emulate the human memory's associative characteristics we need a different type of network: a recurrent neural network.
- A recurrent neural network has feedback loops from its outputs to its inputs. The presence of such loops has a profound impact on the learning capability of the network.
- John Hopfield in 1982 formulated the physical principle of storing information in a dynamically stable network (Content-Addressable Memory).

Single-layer n-neuron Hopfield network

Common Properties and Architecture:
- Every neuron is connected to every other neuron.
- Fully connected with Symmetric weights: $w_{ij} = w_{ji}$.
- No self-loops: $w_{ii} = 0$.
- Each neuron has a single input from the outside world.
- In the Hopfield model the neurons have a binary output taking the values -1 and 1.
- Random updating for neurons.
- A Hopfield Network is a model of associative memory. It is based on Hebbian learning but uses binary neurons.
A Hopfield Network provides a formal model which can be analyzed for determining the **storage capacity** of the network.

An associative memory can be thought as a set of attractors, each with its own basin of attraction.

The space of all possible states of the network is called the **configuration** space.

Basins of attraction: Division of the configuration space by stored patterns.

Stored patterns should be attractors.

![Figure 2](image)

Memories are attractors in state space as shown in the figure.

![Figure 3](image)

The dynamics of the system carries starting points into one of the attractors as shown in the above figure.

A Hopfield net is composed of **binary threshold units** with recurrent connections between them. Recurrent networks of **non-linear units** are generally very hard to analyze. They can behave in many different ways:

- Settle to a stable state.
- Oscillate.
- Follow chaotic trajectories that cannot be predicted.

But Hopfield realized that if the connections are **symmetric**, there is a **global energy function**.

Each “**configuration**” of the network has energy.

The binary threshold decision rule causes the network to settle to an energy minimum.

Pattern recognizer.
- Hopfield networks have two applications. First, they can act as associative memories. Second, they can be used to solve optimization problems.

According to figure 1:
- The Hopfield model starts with the standard McCulloch-Pitts model of a neurons with the sign activation function:

\[y_{\text{sign}} = \begin{cases} +1, & \text{if } X > 0 \\ -1, & \text{if } X < 0 \\ 0, & \text{if } X = 0 \end{cases} \]

- The **current state** is determined by the current outputs of all neurons, \(y_1, y_2, \ldots, y_n \). Thus, for a single-layer n-neuron network, the state can be defined by the **state vector** as:

\[Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \]

- **Synaptic weights** between neurons are represented in matrix form as follows:

\[W = \sum_{m=1}^{M} Y_m Y_m^T - M I \]

- Where \(M \) is the number of states to be memorized by the network, \(Y_m \) is the \(n \times n \) identity matrix, and superscript \(T \) denotes matrix transposition.

Possible states for the three-neuron Hopfield network
The stable state-vertex is determined by the weight matrix W, the current input vector X, and the threshold matrix θ. If the input vector is partially incorrect or incomplete, the initial state will converge into the stable state-vertex after a few iterations.

Example:
Suppose, that our network is required to memorize two states, $(1, 1, 1)$ and $(-1, -1, -1)$. Thus,

\[
Y_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}, \quad Y_1^T = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \quad Y_2^T = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}
\]

where Y_1 and Y_2 are the three-dimensional vectors.

- The 3×3 identity matrix I is

\[
I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

- **weight matrix** calculation:

\[
W = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}
\]

- The network is tested by the sequence of input vectors, X_1 and X_2, which are equal to the output (or target) vectors Y_1 and Y_2, respectively using the following equation:

\[
Y_m = \text{sign}(WX_m - \theta), \quad m = 1, 2, \ldots, M
\]

Where θ is the threshold. The testing process include the following steps:
1) **Activate** the network by applying the input vector X.
2) **Calculate** the actual output vector Y.
3) **Compare** the result with the initial input vector X.

\[
Y_1 = \text{sign}\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\]

\[
Y_2 = \text{sign}\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}
\]
The remaining six states are all unstable. However, stable states (also called fundamental memories) are capable of attracting states that are close to them.

The fundamental memory $(1, 1, 1)$ attracts unstable states $(-1, 1, 1)$, $(1,-1, 1)$ and $(1, 1, -1)$. Each of these unstable states represents a single error, compared to the fundamental memory $(1, 1, 1)$.

The fundamental memory $(-1, -1, -1)$ attracts unstable states $(-1, -1, 1)$, $(-1, 1, -1)$ and $(1, -1, -1)$.

Thus, the Hopfield network can act as an error correction network.