
Dr. Qadri Hamarsheh

1

Associative Neural Networks using Matlab

Example 1: Write a matlab program to find the weight matrix of an auto

associative net to store the vector (1 1 -1 -1). Test the response of the network

by presenting the same pattern and recognize whether it is a known vector

or unknown vector.

The auto associative net has the same inputs and targets. The MATLAB program

for the auto associative net is as follows:
Program

%Auotassociative net to store the vector

clc;

clear;

x = [1 1 –1 –1];

w=zeros (4, 4);

w=x'*x;

yin=x*w;

for i=1:4

 if yin(i)>0

 y(i)=1;

 else

 y(i) = –1;

 end

end

disp ('Weight matrix');

disp (w);

if x == y

 disp ('The vector is a Known Vector');

else

 disp ('The vector is a Unknown Vector');

end

Output

Weight matrix

 1 1 –1 –1

 1 1–1 –1

–1 –1 1 1

–1 –1 1 1

The vector is a known vector.

Dr. Qadri Hamarsheh

2

Example 2: Write an M–file to store the vectors (–1 –1 –1 –1) and (–1 –1 1 1) in

an auto associative net. Find the weight matrix. Test the net with (1 1 1 1) as

input.

The MATLAB program for the auto association problem is as follows:
Program

clc;

clear;

x=[–1 –1 –1 –1;–1 –1 1 1];

t=[1 1 1 1];

w=zeros (4, 4);

for i=1:2

 w=w + x(i,1:4)'*x(i,1:4);

end

yin = t*w;

for i=1:4

 if yin(i)>0

 y(i)=1;

 else

 y(i)=–1;

 end

end

disp ('The calculated weight matrix');

disp (w);

if x(1,1:4)==y(1:4) | x(2,1:4)==y(1:4)

 disp ('The vector is a Known Vector');

else

 disp ('The vector is a unknown vector');

end

 Output

The calculated weight matrix

 2 2 0 0

 2 2 0 0

 0 0 2 2

 0 0 2 2

The vector is an unknown vector.

Example 3: Write an M–file to calculate the weights for the following

patterns using hetero associative neural net for mapping four input vectors

to two output vectors.

S1 S2 S3 S4 t1 t2

1 1 0 0 1 0

1 0 1 0 1 0

1 1 1 0 0 1

0 1 1 0 0 1

Dr. Qadri Hamarsheh

3

Solution
%Hetero associative NN for mapping input vectors to output vectors

clc;

clear;

x= [1 1 0 0; 1 0 1 0; 1 1 1 0; 0 1 1 0];

t= [1 0; 1 0; 0 1; 0 1];

w=zeros (4, 2);

for i=1:4

 w=w+x (i, 1:4)'*t(i,1:2);

end

disp('Weight matrix');

disp(w);
Output

 Weight matrix

 2 1

 1 2

 1 2

 0 0

Example 4: Write a MATLAB program to store the vector (1 1 1 0) in bipolar

binary form and calculate the weight matrix for Hopfield net.
%The MATLAB program for calculating the weight matrix is as follows

%Discrete Hopfield net

clc;

clear;

x=[1 1 1 0];

w=(2*x'–1)*(2*x–1);

for i=1:4

 w (i, i)=0;

end

disp('Weight matrix');

disp(w);
Output

 Weight matrix

 0 1 1 -1

 1 0 1 -1

 1 1 0 -1

-1 -1 -1 0

Example 5: Auto-associative Memories (continuous):
%Auto-associative Memories (continuous)

x1=[-0.3; 0.9; -0.2];

x2=[0.44; -0.7; 0.9];

x3=[0.9; 0.6; 0.8];

Total_M = x1*x1' + x2*x2' + x3*x3';

estimate_x1= Total_M *x1;

estimate_x2= Total_M *x2;

estimate_x3= Total_M *x3;
%Estimates are not perfect because of non-orthogonality of the vectors

Dr. Qadri Hamarsheh

4

%Euclidean distance between x1 and other key vectors

d11 = norm(x1-estimate_x1);

d21 = norm(x2-estimate_x1);

d31 = norm(x3-estimate_x1);
% As expected the response vector estimate_x1 is closest to x1

%Euclidean distance between x2 and other key vectors

d12 = norm(x1-estimate_x2);

d22 = norm(x2-estimate_x2);

d32 = norm(x3-estimate_x2);
%As expected the response vector estimate_x2 is closest to x2

%Euclidean distance between x3 and other key vectors

d13 = norm(x1-estimate_x3);

d23 = norm(x2-estimate_x3);

d33 = norm(x3-estimate_x3);
%As expected the response vector estimate_x3 is closest to x3

 Matlab code for converting continuous data (x1 vector) to binary bipolar

data.
for i=1:length(x1)

 if x1(i)>0

 x1(i) = 1;

 else

 x1(i) = -1;

 end

 end

 In Matlab Hopfield networks can be implemented as vector matrix

manipulations. To make the pattern vectors as easy as possible to read and

write we define them as row vectors.

 We prefer to make the calculations within the interval [−1, 1] (bipolar) as

this makes the calculations simpler. It is, however, easier to type in and to
visually recognize values in the range [0, 1] (binary). Therefore, it may be

better to use this for input and output. Translate a vector from the binary

format into the bipolar.
Example 6:

%Enter three test patterns.

x1b= [0 0 1 0 1 0 0 1];

x2b= [0 0 0 0 0 1 0 0];

x3b= [0 1 1 0 0 1 0 1];
%Translate a vector from the binary format into the bipolar.

%x1= [-1 -1 1 -1 1 -1 -1 1];

%x2= [-1 -1 -1 -1 -1 1 -1 -1];

%x3=[-1 1 1 -1 -1 1 -1 1];

x1 = 2* x1b -1;

x2 = 2* x2b -1;

x3 = 2* x3b -1;
%Calculate a weight matrix.

w=x1'*x1+x2'*x2+x3'*x3-3*eye (8, 8);
%Check if the network was able to store all three patterns.

Dr. Qadri Hamarsheh

5

x1test=sign (w*x1');

x2test=sign (w*x2');

x3test=sign (w*x3');
%Convergence and attractors.

%Can the memory recall the stored patterns from distorted inputs

% patterns? Define a few new patters which are distorted versions of

%the original ones:

x1d= [1 0 1 0 1 0 0 1];

x2d= [1 1 0 0 0 1 0 0];

x3d= [1 1 1 0 1 1 0 1];
%x1d has a one bit error, x2d and x3d have two bit errors.

x1d=[1 -1 1 -1 1 -1 -1 1];

x2d=[1 1 -1 -1 -1 1 -1 -1];

x3d=[1 1 1 -1 1 1 -1 1];

Hopfield neural networks using Matlab Neural Network Tool Box

 Hopfield neural networks can be simulated by using the Neural Network

Tool Box. The architecture is shown below.

 net = newhop (T) takes one input argument:

o T - R x Q matrix of Q target vectors. (Values must be +1 or -1) and
returns a new Hopfield recurrent neural network with stable points at

the vectors in T.

o Hopfield networks consist of a single layer with the dotprod weight

function, netsum net input function, and the satlins transfer function.

Example 7:

 Consider the following design example. Suppose that we want to design a
network with two stable points in a three-dimensional space T.

T = [-1 -1 1; 1 -1 1]';

 We can execute the design with:
net = newhop (T);

 To check that the network is stable at these points use them as initial layer

delay conditions. If the network is stable we would expect that the outputs

Dr. Qadri Hamarsheh

6

Y will be the same. (Since Hopfield networks have no inputs, the second

argument to sim is Q = 2 when using matrix notation).

Ai = T;

[Y, Pf, Af] = sim (net, 2, [], Ai);

%Y

 To see if the network can correct a corrupted vector, run the following

code, which simulates the Hopfield network for five time steps. (Since
Hopfield networks have no inputs, the second argument to sim is {Q TS} =

[1 5] when using cell array notation.)

Ai = {[-0.9; -0.8; 0.7]};

[Y, Pf, Af] = sim (net, {1 5}, { },Ai);

%Y{1}

 If you run the above code, Y{1} will equal T(:,1) if the network has

managed to convert the corrupted vector Ai to the nearest target vector.

Description of sim function

Purpose: simulate a neural network.

Syntax:

[Y, Pf, Af, E, perf] = sim (net, P, Pi, Ai, T)

[Y, Pf, Af, E, perf] = sim (net, {Q TS}, Pi, Ai, T)

[Y,Pf,Af,E,perf] = sim(net,Q,Pi,Ai,T)

Description sim simulates neural networks.

[Y, Pf, Af, E, perf] = sim (net, P, Pi, Ai, T) takes,

net - Network.

P - Network inputs.

Pi - Initial input delay conditions, default = zeros.

Ai - Initial layer delay conditions, default = zeros.

T - Network targets, default = zeros.

and returns,

Y - Network outputs.

Pf - Final input delay conditions.

Af - Final layer delay conditions.

E - Network errors.

perf- Network performance.

Note that arguments Pi, Ai, Pf, and Af are optional and need only be used for

networks that have input or layer delays.
sim’s signal arguments can have two formats: cell array or matrix.

