
Dr. Qadri Hamarsheh

1

Multi-Layer Feedforward Neural Networks using matlab

Part 1

 With Matlab toolbox you can design, train, visualize, and simulate neural

networks.

 The Neural Network Toolbox is designed to allow for many kinds of

networks.
Workflow for Neural Network Design

To implement a Neural Network (design process), 7 steps must be followed:

1. Collect data (Load data source).

2. Neural Network creation.

3. Configure the network (selection of network architecture).

4. Initialize the weights and biases.

5. Train the network.

6. Validate the network (Testing and Performance evaluation).

7. Use the network.
Multilayer perceptron networks procedure steps using matlab:

 The structure of the network is first defined, activation functions are chosen

and weights and biases are initialized.

 The training algorithm’ parameters like error goal, maximum number of

epochs (iterations), etc., are defined.

 Run the training algorithm.

 Simulate the output of the neural network with the measured input data.

This is compared with the measured outputs.

 Final validation must be carried out with independent data.

 For demo programs type nnd in matlab command

 Graphical Interface Function: nntool Neural Network Tool - GUI.

The MATLAB commands used in the procedure are newff, train, and sim

1) newff create a feed-forward backpropagation network object and It also

automatically initializes the network.
Syntax:

 net = newff (P,T,S)

 net = newff (PR, [S1 S2 …SNl], {TF1, TF2, …, TFNl}, BTF ,BLF,PF)

 net = newff (P,T,S,TF,BTF,BLF,PF,IPF,OPF, DDF)
Description:

The function takes the following parameters
 P - RxQ1 matrix of Q1 representative R-element input vectors.

 T - SNxQ2 matrix of Q2 representative SN-element target vectors.

 S - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].

 PR - = Rx2 matrix of min and max values for R input elements.

Dr. Qadri Hamarsheh

2

 Si - Number of neurons (size) in the ith layer, i = 1,…, Nl.

 Nl - Number of layers.

 TFi - Transfer function of ith layer. Default is 'tansig' for hidden layers,

and 'purelin' for output layer. The transfer functions TF{i} can be any

differentiable transfer function such as TANSIG, LOGSIG, or PURELIN.
 BTF - Backpropagation training function, default = 'traingdx'.

 BLF - Backpropagation learning function, default = 'learngdm'.

 PF - Performance function, default = 'mse'.

And returns an N layer feed-forward backpropagation Network.
newff uses random number generator in creating the initial values for the

network weights.

If neurons should have different transfer functions then they have to be arranged in
different layers.

Example:

net = newff (minmax(p), [5, 2], {’tansig’,’logsig’}, ’traingdm’, ’learngdm’, ’mse’);

2) train: is used to train the network whenever train is called.
Syntax:

net1 = train (net, P, T)
Description:

The function takes the following parameters
 net - the initial MLP network generated by newff.

 P – Network’ measured input vector.

 T - Network targets (measured output vector), default = zeros.

And returns
 net1 - New network object.

The network’s training parameters (net.trainParam) are set to contain the

parameters:
o trainParam :This property defines the parameters and values of the

current training function.
o net.trainParam: The fields of this property depend on the current

training function.
o The most used of these parameters (components of trainParam).

 net.trainParam.epochs which tells the algorithm the maximum

number of epochs to train.
 net.trainParam.show that tells the algorithm how many epochs

there should be between each presentation of the performance.

 Training occurs according to trainlm training parameters, shown here with

their default values:

 net.trainParam.epochs 100 Maximum number of epochs to train

 net.trainParam.show 25 Epochs between showing progress

 net.trainParam.goal 0 Performance goal

 net.trainParam.time inf Maximum time to train in seconds

 net.trainParam.min_grad 1e-6 Minimum performance gradient

 net.trainParam.max_fail 5 Maximum validation failures

Dr. Qadri Hamarsheh

3

 Typically one epoch of training is defined as a single presentation of all

input vectors to the network. The network is then updated according to the

results of all those presentations.

 Each weight and bias updates according to its learning function after each

epoch (one pass through the entire set of input vectors).
 trainFcn: This property defines the Backpropagation training function.

net.trainFcn = 'trainlm';

 performFcn: This property defines the function used to measure the

network’s performance. The performance function is the function that

determines how well the ANN is doing its task.
net.performFcn

o Performance Functions

mae Mean absolute error-performance function.

mse Mean squared error-performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error-performance function.

 To prepare a custom network to be trained with mae, set

net.performFcn = 'mae';

 To prepare a custom network to be trained with mse, set

net.performFcn = 'mse'.

 For a perceptron it is the mean absolute error performance
function mae. For linear regression usually the mean squared

error performance function mse is used.

 Training stops when any of these conditions are met:

o The maximum number of epochs (repetitions) is reached.

o Performance has been minimized to the goal.

o The maximum amount of time has been exceeded.

o Validation performance has increase more than max_fail times since the

last time it decreased (when using validation).

 train calls the function indicated by net.trainFcn, using the training

parameter values indicated by net.trainParam.

3) sim is used to simulate the network when sim is called.
Syntax:

a = sim (net1, P)
Description:

The function takes the following parameters
 net1 - final MLP object.

 P - input vector

And returns
 a - measured output.

 To test how well the resulting MLP net1 approximates the data, sim

Command is applied. The measured output is a (simulated output of MLP

network).

Dr. Qadri Hamarsheh

4

 Error difference (e = T – a) at each measured point. The final validation must

be done with independent data.

4) Init: is used to initialize the network whenever init is called.

net = init (net)

 The initFcn is the function that initialized the weights and biases of the

network.
5) adapt :allows a neural network to adapt (change weights and biases on each

presentation of an input).

 The trainFcn and adaptFcn are used for the two different learning types:

o Batch learning.

o Incremental or on-line learning.
6) display the name and properties of a neural network’s variables.

display (net)

7) view : View network structure.

view (net);

8) Type net to see the network:

>> net

