
Dr. Qadri Hamarsheh

1

Multi-Layer Feedforward Neural Networks using matlab

Part 2
Examples:

Example 1: (fitting data) Consider humps function in MATLAB. It is given by

Solution: Matlab Code:

%Obtain the data:

x = 0:.05:2; y=humps(x);

P=x; T=y;

%Plot the data

plot (P, T, 'x')

grid; xlabel('time (s)'); ylabel('output'); title('humps function')
%DESIGN THE NETWORK

net = newff([0 2], [5,1], {'tansig','purelin'},'traingd');
% the first argument [0 2] defines the range of the input and initializes the network.

% the second argument the structure of the network, there are two layers.

% 5 is the number of the nodes in the first hidden layer,

% 1 is the number of nodes in the output layer,

% Next the activation functions in the layers are defined.

% in the first hidden layer there are 5 tansig functions.

% in the output layer there is 1 linear function.

% ‘traingd’ defines the basic teaching scheme – gradient method

% Define learning parameters

net.trainParam.show = 50; % The result is shown at every 50th iteration (epoch)

net.trainParam.lr = 0.05; % Learning rate used in some gradient schemes

net.trainParam.epochs =1000; % Max number of iterations

net.trainParam.goal = 1e-3; % Error tolerance; stopping criterion

%Train network

net1 = train(net, P, T); % Iterates gradient type of loop
% Resulting network is strored in net1

%Convergenceurve c is shown below.

% Simulate how good a result is achieved: Input is the same input vector P.

% Output is the output of the neural network, which should be compared with output data

a= sim(net1,P);
% Plot result and compare

plot (P, a-T, P,T); grid;

The fit is quite bad, to solve this problem:

 Change the size of the network (bigger. size).
net=newff([0 2], [20,1], {'tansig','purelin'},'traingd');

 Improve the training algorithm performance or even change the algorithm.

Dr. Qadri Hamarsheh

2

Try Levenberg-Marquardt – trainlm (more efficient training algorithm)
net=newff([0 2], [10,1], {'tansig','purelin'},'trainlm');

It is clear that L-M algorithm is significantly faster and preferable method to
back-propagation.

Try simulating with independent data.

x1=0:0.01:2; P1=x1;y1=humps(x1); T1=y1;

a1= sim (net1, P1);

plot (P1,a1, 'r', P1,T1, 'g', P,T, 'b', P1, T1-a1, 'y');

legend ('a1','T1','T','Error');

Example 2: Consider a surface described by 𝐳 = 𝐜𝐨𝐬 (𝐱) 𝐬𝐢𝐧 (𝐲) defined on a
square −𝟐 ≤ 𝒙 ≤ 𝟐, −𝟐 ≤ 𝒚 ≤ 𝟐, plot the surface z as a function of x and y and

design a neural network, which will fit the data. You should study different

alternatives and test the final result by studying the fitting error.

Solution
%Generate data

x = -2:0.25:2; y = -2:0.25:2;

z = cos(x)'*sin(y);

%Draw the surface

mesh (x, y, z)

xlabel ('x axis'); ylabel ('y axis'); zlabel ('z axis');

title('surface z = cos(x)sin(y)');

gi=input('Strike any key ...');

%Store data in input matrix P and output vector T

P = [x; y]; T = z;

%Create and initialize the network

net=newff ([-2 2; -2 2], [25 17], {'tansig' 'purelin'},'trainlm');

%Apply Levenberg-Marquardt algorithm

%Define parameters

net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-3;

%Train network

net1 = train (net, P, T);

gi=input('Strike any key ...');

%Plot how the error develops

%Simulate the response of the neural network and draw the surface

a= sim(net1,P);

mesh (x, y, a)

% Error surface

mesh (x, y, a-z)

xlabel ('x axis'); ylabel ('y axis'); zlabel ('Error'); title ('Error surface')

gi=input('Strike any key to continue......');

% Maximum fitting error

Maxfiterror = max (max (z-a)); %Maxfiterror = 0.1116

Dr. Qadri Hamarsheh

3

Example 3

 Here a perceptron is created with a 1-element input ranging from -10 to 10,

and one neuron.
net = newp ([-10 10],1);

 Here the network is given a batch of inputs P. The error is calculated by

subtracting the output Y from target T. Then the mean absolute error is

calculated.
P = [-10 -5 0 5 10];

T = [0 0 1 1 1];

Y = sim (net, P)

E = T-Y;

perf = mae (E) ;

Example 4

 Here a two-layer feed-forward network is created with a 1-element input

ranging from -10 to 10, four hidden tansig neurons, and one purelin

output neuron.
net = newff ([-10 10],[4 1],{'tansig','purelin'});

 Here the network is given a batch of inputs P. The error is calculated by

subtracting the output A from target T. Then the mean squared error is

calculated.
P = [-10 -5 0 5 10];

T= [0 0 1 1 1];

Y = sim(net,P)

E = T-Y

perf = mse(E)

Example 5:
load house_dataset;

inputs = houseInputs;

targets = houseTargets;

net = newff (inputs, targets, 20);

net = train(net, inputs, targets);

outputs = sim(net, inputs)

%outputs1 = net (inputs);

errors = outputs - targets;

perf = perform(net, outputs, targets)

