Fundamentals of spatial Filtering Outline of the Lecture
$>$ Introduction.

- Spatial Correlation and convolution.
$>$ Vector Representation of linear filtering

Introduction

Filters in frequency domain:

- Lowpass filter that passes low frequencies: used for smoothing (blurring) on the image.
- Highpass filter that passes high frequencies: used for sharpening the image.
- Bandpass filter.

Filters in spatial domain:

- Spatial filters used different masks (kemels, templates or windows).
- There is a one-to-one correspondence between linear spatial filters and filters in frequency domains.
- Spatial filters can be used for linear and nonlinear filtering. (Frequency domain filters just for linear filtering).
- The mechanics of spatial filtering spatial filters consists of:

1. Neighbourhood (small rectangle).
2. Predefined operation that is performed on the image pixel.

Figure 1

- Filtering creates new pixel with coordinates equal to the coordinates of the centre of the neighbourhood, and whose value is the result of the filtering operation.
- If the operation performed on the image pixel is linear, then the filter is called a linear spatial filter, otherwise, the filter is nonlinear.
- Figure 1 presents the mechanics of linear spatial filtering using a $3 * 3$ neighborhood.
- the response (output) $g(x, y)$ of the filter at any point (x, y) in the image is the sum of products of the filter coefficients and the image pixels values:

$$
\begin{aligned}
g(x, y)= & w(-1,-1) f(x-1, y-1)+w(-1,0) f(x-1, y)+ \\
& \ldots+w(0,0) f(x, y)+\ldots+w(1,1) f(x+1, y+1)
\end{aligned}
$$

Observe that the center coefficient of the filter, $\boldsymbol{w}(\mathbf{0}, \mathbf{0})$ aligns with the pixel at location $(\boldsymbol{x}, \boldsymbol{y})$.
General mask of size $\boldsymbol{m} * \boldsymbol{n}$:
Assume that

$$
\begin{gathered}
m=2 a+1 \\
\text { and } \\
n=2 b+1
\end{gathered}
$$

(where $\boldsymbol{a}, \boldsymbol{b}$ are positive integers).

(Odd filters)

In general, linear spatial filtering of an image of size $\boldsymbol{M} * \boldsymbol{N}$ with a filter of size $\boldsymbol{m} * \boldsymbol{n}$ is given by the expression:

$$
g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x+s, y+t)
$$

Where \boldsymbol{x} and \boldsymbol{y} are varied so that each pixel in \boldsymbol{w} visits every pixel in \boldsymbol{f}.

Spatial Correlation and convolution

- Correlation: the process of moving a filter mask over the image and computing the sum of products at each location.
- Convolution: the same process as correlation, except that the filter is first rotated by 180°

Assume that f is a 1-D function, and w is a filter

Notes:

- There are parts of the functions (images) that do not overlap (the solution of this problem is pad \boldsymbol{f} with enough 0 s on either side to allow each pixel in \boldsymbol{w} to visit every pixel in \boldsymbol{f}.
- If the filter is of size \boldsymbol{m}, we need $(\boldsymbol{m}-1)$ s on either side of \boldsymbol{f}.
- The first value of correlation is the sum of products of \boldsymbol{f} and \boldsymbol{w} for the initial position (Figure 2.c).
(The sum of product $=0$) this corresponds to a displacement $\boldsymbol{x}=\mathbf{0}$
- To obtain the second value of correlation, we shift \boldsymbol{W} are pixel location to the right (displacement $\boldsymbol{x}=\mathbf{1}$) and compute the sum of products (result $=0$).
- The first nonzero is when $\boldsymbol{x}=\mathbf{3}$, in this case the $\boldsymbol{8}$ in \boldsymbol{w} overlaps the $\mathbf{1}$ in \boldsymbol{f} and the result of correlation is $\boldsymbol{8}$.
- The full correlation result (figure $2 . \mathrm{g}$) -12 values of \boldsymbol{x}
- To work with correlation arrays that are the same size as \boldsymbol{f}, in this case, we can crop the full correlation to the size of the original function. (Figure 2.h).
- The result of correlation is a copy of \boldsymbol{w}, but rotated by $\mathbf{1 8 0}^{\mathbf{0}}$
- The correlation with a function with a discrete unit impulse yields a rotated version of the function at the location of the impulse.
- The convolution with a function with a discrete unit impulse yields a copy of that function at the location of the impulse.

Correlation and convolution with images

- With a filter of size $\boldsymbol{m} * \boldsymbol{n}$, we pad the image with a minimum of $\boldsymbol{m}-\mathbf{1}$ rows of 0 s at the top and the bottom, and $\boldsymbol{n} \mathbf{- 1}$ columns of 0 s on the left and right.
- If the filter mask is symmetric, correlation and convolution yield the same result.

Summary:

- Correlation of a filter $\mathrm{w}(\mathrm{x}, \mathrm{y})$ of size $\mathrm{m} * \mathrm{n}$ with an image $\mathrm{f}(\mathrm{x}, \mathrm{y})$ denoted as

$$
\mathrm{W}(\mathrm{x}, \mathrm{y})^{\circ} \mathrm{f}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{s}=-\mathrm{a}}^{\mathrm{a}} \sum_{\mathrm{t}=-\mathrm{b}}^{\mathrm{b}} \mathrm{w}(\mathrm{~s}, \mathrm{t}) \mathrm{f}(\mathrm{x}+\mathrm{s}, \mathrm{y}+\mathrm{t})
$$

- In similar manner, the convolution of $w(x, y)$ and $f(x, y)$ denoted by $\mathrm{w}(\mathrm{x}, \mathrm{y}) * \mathrm{f}(\mathrm{x}, \mathrm{y})$ is given by:

$$
\mathrm{W}(\mathrm{x}, \mathrm{y}) * \mathrm{f}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{s}=-\mathrm{a}}^{\mathrm{a}} \sum_{\mathrm{t}=-\mathrm{b}}^{\mathrm{b}} \mathrm{w}(\mathrm{~s}, \mathrm{t}) \mathrm{f}(\mathrm{x}-\mathrm{s}, \mathrm{y}-\mathrm{t})
$$

Where the minus sign on the right flip (rotate by $\mathbf{1 8 0}^{\mathbf{0}}$)
(We can flip and shift either f or w)

Vector Representation of linear filtering:

- Correlation

$$
R=w_{1} z_{1}+w_{2} z_{2}+\cdots+w_{m n} z_{m n}=\sum_{\mathrm{k}=1}^{\mathrm{mn}} w_{\boldsymbol{k}} z_{\boldsymbol{k}}=\boldsymbol{w}^{\boldsymbol{T}} \mathrm{Z}
$$

\checkmark R- the response of a mask
$\checkmark W_{k}$ - the coefficients of an $\mathrm{m} * \mathrm{n}$ filter
$\checkmark Z_{k}$ - the corresponding image intensities encompassed by the filter

- Convolution

We simply rotate the mask by $\mathbf{1 8 0}^{0}$
Example: The general 3*3 mask equation:

Where:
W and Z are g-dimensional vectors (mask and image)

Another representation of $3 * 3$ filter mask

w_{1}	w_{2}	w_{3}
w_{4}	w_{5}	w_{6}
w_{7}	w_{8}	w_{9}

Example of filters masks

