

Fundamentals of spatial Filtering

Outline of the Lecture

- > Introduction.
- > Spatial Correlation and convolution.
- Vector Representation of linear filtering

Introduction

Filters in frequency domain:

- *Lowpass filter* that passes low frequencies: used for smoothing (blurring) on the image.
- *Highpass filter* that passes high frequencies: used for sharpening the image.
- Bandpass filter.

Filters in spatial domain:

- Spatial filters used different masks (kemels, templates or windows).
- There is a *one-to-one* correspondence between *linear* spatial filters and filters in frequency domains.
- Spatial filters can be used for *linear* and *nonlinear* filtering. (Frequency domain filters just for linear filtering).
- The **mechanics** of spatial filtering spatial filters consists of:
 - 1. Neighbourhood (small rectangle).
 - 2. Predefined operation that is performed on the image pixel.

- *Filtering* creates new pixel with coordinates equal to the coordinates of the centre of the neighbourhood, and whose value is the result of the filtering operation.
 - If the operation performed on the image pixel is **linear**, then the filter is called a **linear spatial filter**, otherwise, the filter is **nonlinear**.
 - \circ Figure 1 presents the mechanics of linear spatial filtering using a 3*3 *neighborhood*.
 - the *response* (output) g(x, y) of the filter at any point (x, y) in the image is the sum of products of the filter coefficients and the image pixels values:

Dr. Qadri Hamarsheh

g(x, y) = w(-1, -1)f(x - 1, y - 1) + w(-1, 0)f(x - 1, y) ++ w(0, 0)f(x, y) + w(1, 1)f(x + 1, y + 1)

+
$$W(0,0) f(x,y)$$
 +... + $W(1,1) f(x + 1, y + 1)$

Observe that the center coefficient of the filter, w(0,0) aligns with the pixel at location(x, y). General mask of size m * n:

Assume that

m = 2a + 1and n = 2b + 1

(where *a*, *b* are positive integers).

(Odd filters)

In general, linear spatial filtering of an image of size M * N with a filter of size m * n is given by the expression:

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x+s, y+t)$$

Where \boldsymbol{x} and \boldsymbol{y} are varied so that each pixel in \boldsymbol{w} visits every pixel in \boldsymbol{f} .

Spatial Correlation and convolution

- **Correlation**: the process of moving a filter mask over the image and computing the sum of products at each location.
- Convolution: the same process as correlation, except that the filter is first *rotated* by 180⁰

Dr. Qadri Hamarsheh **Example:** 1-D illustration: (figure 2) Assume that *f* is a 1-D function, and *w* is a filter

Correlation				Convolution													
\sim Origin f w		1	- (Ori	igir	1		f			1	w r	ota	tec	118	0°	
(a) 0 0 0 1 0 0 0 0 1 2 3	2 8	Ó	0	0	1	0	0	0	0			8	2	3	2	1	(i)
(b) 0 0 0 1 0 0 0 0 1 2 3 2 8 ▲ Starting position align	nment	8	2	3	2	0 1	0	0	1	0	0	0	0				(j)
(c) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	000	0 8	0 2	0 3	0 2	0 1	0	0	1	0	0	0	0	0	0 (D 0	(k)
(d) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0	0 8	0 2	0 3	0 2	0 1	0	1	0	0	0	0	0	0 (0 0	(1)
(e) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 3 2 8 ▲ Position after four sh	0 0 0 ifts	0	0	0	0	0 8	0 2	0 3	1 2	0 1	0	0	0	0	0 (0 0	(m)
(f) 0 0 0 0 0 0 0 1 0 0 0 0 0	0 0 0 3 2 8	0	0	0	0	0	0	0	1	0	0	0	0 8	0 2	0 0	0 0 2 1	(n)
Full correlation result]	Ful	l co	onv	/ol	utio	on	res	sult				
(g) 0 0 0 8 2 3 2 1 0 0 0	0			0	0	0	1	2	3	2	8	0	0	0	0		(0)
Cropped correlation result					Cr	opp	pec		onv	olu	itio	on	resi	ılt			(-)
(h) 0 8 2 3 2 1 0 0						0	1	2	3	2	8	0	0				(p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that correlation and convolution are functions of *displacement*.

Notes:

- There are parts of the functions (images) that **do not overlap** (the solution of this problem is **pad f** with enough 0s on either side to allow each pixel in **w** to visit every pixel in **f**.
- If the filter is of size *m*, we need (*m-1*) 0s on either side of *f*.
- The first value of correlation is the sum of products of **f** and **w** for the initial position (Figure 2.c).

(The sum of product =0) this corresponds to a displacement $\mathbf{x} = \mathbf{0}$

- To obtain the second value of correlation, we shift w are pixel location to the right (displacement x=1) and compute the sum of products (result =0).
- The first nonzero is when **x=3**, in this case the **8** in **w** overlaps the **1** in **f** and the result of correlation is **8**.
- The full correlation result (figure 2.g) -12 values of **x**
- To work with correlation arrays that are the same size as *f*, in this case, we can crop the full correlation to the size of the original function. (Figure 2.h).
- The result of correlation is a copy of \mathbf{W} , but rotated by $\mathbf{180}^{0}$
- The correlation with a function with a discrete unit impulse yields a rotated version of the function at the location of the impulse.
- The convolution with a function with a discrete unit impulse yields a copy of that function at the location of the impulse.

Correlation and convolution with images

With a filter of size *m*n*, we pad the image with a minimum of *m-1* rows of 0s at the top and the bottom, and *n-1* columns of 0s on the left and right.

• If the filter mask is *symmetric*, correlation and convolution yield the same result. **Summary:**

• Correlation of a filter w(x, y) of size m * n with an image f(x, y) denoted as

W(x,y) °f(x,y) =
$$\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)f(x+s,y+t)$$

• In similar manner, the **convolution** of w(x, y) and f(x, y) denoted by w(x, y) * f(x, y) is given by:

W(x,y) * f(x,y) =
$$\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)f(x-s,y-t)$$

Where the minus sign on the right flip (rotate by **180**⁰)

(We can flip and shift either **f** or **w**)

Dr. Qadri Hamarsheh

	Padded f						
	0 0 0 0 0 0 0 0 0						
	0 0 0 0 0 0 0 0 0						
	0 0 0 0 0 0 0 0 0						
$\int Origin f(x, y)$	0 0 0 0 0 0 0 0 0						
0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$						
$0 \ 0 \ 0 \ 0 \ 0 \ w(x, y)$	0 0 0 0 0 0 0 0 0						
0 0 1 0 0 1 2 3	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 4 5 6	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 7 8 9	0 0 0 0 0 0 0 0 0						
(a)	(b)						
\sum Initial position for w	Full correlation result	Cropped correlation result					
1 2 3 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0					
4 5 6 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 9 8 7 0					
<u>7_8_9</u> 0000000	0 0 0 0 0 0 0 0 0	0 6 5 4 0					
0 0 0 0 0 0 0 0 0	0 0 0 9 8 7 0 0 0	0 3 2 1 0					
$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$	0 0 0 6 5 4 0 0 0	0 0 0 0 0					
0 0 0 0 0 0 0 0 0	0 0 0 3 2 1 0 0 0						
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(-)					
(c)	(d)	(e)					
\mathbf{x} Rotated w	Full convolution result	Cropped convolution resu					
987000000	0 0 0 0 0 0 0 0 0	0 0 0 0 0					
654000000	0 0 0 0 0 0 0 0 0	0 1 2 3 0					
<u>3 2 1</u> 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 4 5 6 0					
0 0 0 0 0 0 0 0 0	0 0 0 1 2 3 0 0 0	0 7 8 9 0					
0 0 0 0 1 0 0 0 0	0 0 0 4 5 6 0 0 0	0 0 0 0 0					
0 0 0 0 0 0 0 0 0	0 0 0 7 8 9 0 0 0						
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0						
(f)	(f) (g)						

Vector Representation of linear filtering:

• Correlation

$$R = w_1 z_1 + w_2 z_2 + \dots + w_{mn} z_{mn} = \sum_{k=1}^{mn} w_k z_k = w^T Z$$

- \checkmark **R** the response of a mask
- $\checkmark W_k$ the coefficients of an m * n filter
- $\checkmark Z_k$ the corresponding image intensities encompassed by the filter

• Convolution

We simply rotate the mask by **180⁰ Example:** The general 3*3 mask equation:

$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9 = \sum_{k=1}^9 w_k z_k = w^T Z$$

Where:

W and Z are g-dimensional vectors (mask and image)

Dr. Qadri Hamarsheh Another representation of 3*3 filter mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Example of filters masks

	1	1	1		1	2	1		a b FIGURE 3.32 Two 3 × 3 smoothing (averaging) filter masks. The
$\frac{1}{9} \times$	1	1	1	$\frac{1}{16}$ ×	2	4	2		constant multipli- er in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.
	1	1	1		1	2	1		