Microprocessors (0630371)
Fall 2010/2011- Lecture Notes # 4

Outline of the Lecture
» Arithmetic and logic Unit (ALU).
» Assembly Language programmin-Introduction.
» Description of Instruction Sei

Arithmetic and logic Unit (ALU)

The basic operations are implemented in hardwaed. ALU is having collecion of two
types of operations:

» Arithmetic operation
» Logical operations

Considerypothetical ALU having 4 arithmetic operations and 4 logioperation.

» Four arithmetic operations. Addition, subtractionyltiplication and division
» Four logical operations: OR, AND, NOT & XOlI

To identify any one of these four logical operasiasr four arithmetic operations, tv
control lines are needed. Also to identify the amg of these two grou- arithmetic or
logical, another control line is needed. we need three control lines.

We need three control lines to identify any one of stheoperations. The inp
combination of these control lines are shown be

Control lineC, is used to identify the group: logical or arithneei.e.

C, = 0: arithmetic operatiolC, = 1: logical operation.

Control linesC, andC; are used to identify any one of the four operationa group
One possible combination is given he

—--:—-m-—m—
] [|
] [|
] [|

€1 | Co| Arithmetic C, =0 Logical ', =1

0 0 Addition OR

0 1 Subtraction AND

1 0 Multiplication NOT

I | Division EX-OR

A 3X8 decode is used to decode the instruction. The bitdram of the ALlis shown
in figure

!
)

L T~
-,

E I L P
i
.

Block Diagram of the ALU
The ALU has got two input registers named as A Brahd one output storage regis
named as C. It performs the operatior

C=AopB

The input data are stored in A and B, and accorttinthe operation specified in tl
controllines, the ALU perform the operation and put theulein register C
As for example, if the contents of controls lines,&00, then the decoder enables
addition operation and it activates the adder dirend the addition operation
performed o the data that are available in storage registend\B . After the completic
of the operation, the result is stored in reg C.
We should have some hardware implementations faicbaperations. These ba:
operations can be used to implement scomplicated operations which are not feas
to implement directly in hardwa

Assembly Language programming-I ntroduction

Assemble, Link and Run aProgram
The following summarizes the process required teemble, link and run an assem
language program.
Step I Edit the program usinEditor (save file ag.asm)
Step 2 Assemble the progra(*.asm) usingMASM or TASM , you will get(*.obj)
Step 3:Link the program*(obj) usingLINK or TLINK you will get ¢.exe)
» ‘“.asm” fileis the source file created with an editor aw@rd processc
» “.obj” assembler (e.g. TASM) converts .asm file’s Assendahguage instructior
into machine languac
> “.exe” TLINK is the program to produce the executable

Assembly Language pragm consists of series of lines of Assembly langtnstructions.
Instruction format
» An assembly language instruction consists of fald$

[label:] mnemonic [operands] [;comments]

Label (optional)

Instruction mnemonic (required)
Operand(s) (usually required)
Comment (optional)

Brackets indicate that the field is optional. Braiskare not typed.

>
>

>
>

Thelabel field allows the program to refer to a line of eday name.
In a line of assembly language program there cam@monic (instruction) and
operand(s).

Ex: ADD AL, BL

MOV AX, 6764H

The comment field begins with*d.
Alternatively, instead of these two fields theren d@e directives. Directives are
used by the assembler to organize the program #saweother output files.
SEGMENT, DB, ENDS, ASSUME, END, and ENDP are examples of
directives.Directives are statements that give directions to the assenableut
how it should translate the assembly languageuastms into machine code.

Description of Instruction Set

8086 has 117 instructions, 8086 instruction sesist® of the following instructions:

YV VYV

YVVVVYVY

Data transfer instructions---MOV , PUSH
Arithmetic - add, subtract, increment and decrementABEH, SUB, MUL,
DIV, INC.
Logic instructions -NOT, AND, OR, XOR.
Control transfer —
o Conditional, unconditional program branch{-©0P, LOOPE, LOOPZ.
o Conditional, unconditional call subroutinescALL, JVP, JA, JNBE.
Enabling/disabling interrupts---- INT, INTO, IRET.
Stack operations-USH, POP.
Simplelnput and Output port transfer instructions---iN, OUT
SpecialAddresstransfer instructions ----+£EA, LDS
Setting/Clearing flag bits---STC, CLC, STD, CLD
String Instructions------MOVS, MOVSB, MOVSW.
ExternalHardware Synchronization instructions---HLT, WAIT, NOP

