Digital System Design

Objectives:-

1. Binary operators and their representations.
2. Relationships between Boolean expressions, Truth tables and Logic circuits.
3. Logic gates' postulates, laws and properties.

1. Binary operators and their representations

> Boolean algebra is the basic mathematics needed for logic design of digital systems; Boolean algebra uses Boolean (logical) variables with two values (0 or 1).
"Two- valued Boolean algebra"

Basic operations:

The basic operations of Boolean algebra are AND, OR, and NOT (complement).
a) NOT operation (NOT Gate):-

$$
\overline{\mathbf{1}}=0 ; \overline{0}=1
$$

$>$ The not operator is also called the complement or the inverse:
$\Rightarrow \overline{\mathbf{x}}$ is the complement of \mathbf{x}.
$>$ Output is opposite of input.
$>$ Truth table: truth table describes inputs and outputs in terms of $\mathbf{1}_{2}$ and $\mathbf{0}_{2}$ rather physical (voltage) levels.

Truth table:

Input	Output
x	\bar{x}
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$

1-high
0 - low
b) AND operation (AND gate).

The output is 1 only if all inputs are 1 , if any of the input is 0 , then the output is 0 .
$>$ The truth table of AND gate (2-inputs, 1-output) as the following:

Inputs		Output
A	B	$Y=A \cdot B$
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{1}$	0
$\mathbf{1}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

The AND operation is referred to as logical multiplication
c) OR operation (OR gate)

The output is 1 if
A is 1 or if B is 1

The truth table of $\boldsymbol{O R}$ gate (2-inputs, 1-output)as the following:

Inputs		Output
A	B	$Y=A+B$
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

OR operation is sometimes referred to as "inclusive OR" or logical addition.
d) NAND gate: (Not AND gate)

$>$ The truth table of NAND gate (2-inputs, 1-output) as the following:

inputs		outputs	
A	B	$Y=A . B$	$Y 1=\overline{A . B}$
$\mathbf{0}$	$\mathbf{0}$	0	1
$\mathbf{0}$	$\mathbf{1}$	0	1
$\mathbf{1}$	$\mathbf{0}$	0	1
$\mathbf{1}$	$\mathbf{1}$	1	0

e) NOR gate (Not OR gate):

The truth table of NOR gate (2-inputs, 1-output) as the following:

inputs		outputs	
A	B	$A+B$	$\overline{A+B}$
$\mathbf{0}$	$\mathbf{0}$	0	1
$\mathbf{0}$	$\mathbf{1}$	1	0
$\mathbf{1}$	$\mathbf{0}$	1	0
$\mathbf{1}$	$\mathbf{1}$	1	0

2. Relationships between Boolean expression, truth tables and logic circuits

Logic circuits

$>$ If one is given, we can get the other.
To draw a circuit from a Boolean expression:
\checkmark From the left, make an input line for each variable.
\checkmark Next, put a Not gate in for each variable, that appears negated in the expression.
\checkmark Still working, from left to right.

Example 1:- $Z=A \bar{B}$

Example 2:- $\mathrm{A} \cdot \overline{\mathrm{B}}+\overline{(\boldsymbol{A + B})} \cdot \mathrm{B}$

Precedence of operators:

1. Parenthesis
2. NOT
3. AND
4. OR

3. Logic gate's postulates, laws and properties

Postulates are used to deduce the rules, theorems and properties.
a) Postulates of Boolean algebra

Postulate	For OR Gate	For AND Gate
$\boldsymbol{P 1}$	$\boldsymbol{A}+\mathbf{0}=\boldsymbol{A}$	$\boldsymbol{A} \cdot \mathbf{1}=\boldsymbol{A}$
$\boldsymbol{P} 2$	$\boldsymbol{A}+\overline{\boldsymbol{A}}=\mathbf{1}$	$\boldsymbol{A} \cdot \overline{\boldsymbol{A}}=\mathbf{0}$
$\boldsymbol{P 3}$	$\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$	$\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$
$\boldsymbol{P 4}$	$\boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C}$	$\boldsymbol{A}+\boldsymbol{B} \cdot \boldsymbol{C}=(\boldsymbol{A}+\boldsymbol{B}) \cdot(\boldsymbol{A}+\boldsymbol{C})$
Duality principle		

$>$ Duality principle states that every algebraic expression is deducible if the operators and the identity elements are interchanged.

Identity elements:
0 for or gate
1 for and gate
b) Boolean algebra theorems:
$>$ There are six theorems of Boolean algebra:

Theorem	For OR Gate	For AND Gate
T1: Idempotent laws	$\boldsymbol{A}+\boldsymbol{A}=\boldsymbol{A}$	$\boldsymbol{A} \cdot \boldsymbol{A}=\boldsymbol{A}$
T2: operations with 0 and 1	$A+\mathbf{1}=1$	$\boldsymbol{A} \cdot \mathbf{0}=0$
T3: associative laws	$A+(B+C)=(A+B)+C$	$\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}$
T4: de Morgan laws (inversion law)	$\overline{A+B}=\bar{A} \cdot \bar{B}$	$\overline{A \cdot B}=\bar{A}+\bar{B}$
T5: Absorption laws	$\boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A}$	$A \cdot(A+B)=A$
T6: involution law	$\overline{\bar{A}}=\boldsymbol{A}$	

$>$ To proof these theorems and other logic expressions, we can use two ways:
[1] Truth table
Example 1: proof that $A+A \cdot B=A$

A	B	$A \cdot B$	$A+A \cdot B$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example 2: verify the de Morgan's laws using a truth table.

A	B	\bar{A}	\bar{B}	$A+B$	$\overline{A+B}$	$\bar{A} \cdot \bar{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\bar{A}+\bar{B}$
$\mathbf{0}$	$\mathbf{0}$	1	1	0	1	1	0	1	1
$\mathbf{0}$	1	1	0	1	0	0	0	1	1
$\mathbf{1}$	$\mathbf{0}$	0	1	1	0	0	0	1	1
$\mathbf{1}$	1	0	0	1	0	0	1	0	0
$\overline{A+B}=\bar{A} \cdot \bar{B}$									
		$\overline{A \cdot B}=\bar{A}+\bar{B}$							

Some Details:

\rightarrow The duality principle is formed by replacing $A N D$ with $O R, O R$ with $A N D, 0$ with $1, I$ with 0 , variables and complements are left unchanged.
> de Morgan's laws Allow us to convert between types of gates; we can generalize them to \boldsymbol{n} variables:

[2] Algebraically using basic theorems.

Example 1: verify that

a) $A+A \cdot B=A$
b) $A(A+B)=A$

Proof (a):

$$
A+A \cdot B=A \cdot \mathbf{1}+A \cdot B=A(1+B)=A \cdot \mathbf{1}=A
$$

Proof (b):

$$
A(A+B)=A \quad \text { by duality. }
$$

Example 2
a) $(A \bar{B}+0) E+1=1$
b) $(A \bar{B}+0) \overline{(A \bar{B}+0)}=0$
c) An input \boldsymbol{A} is inverted and applied to an $\boldsymbol{A} \boldsymbol{N} \boldsymbol{D}$ gate. The other input is \boldsymbol{B}. the output of the $\boldsymbol{A N D}$ gate is applied to an $\boldsymbol{O R}$ gate. \boldsymbol{A} is the second input to $\boldsymbol{O R}$ gate. Draw the logic circuit and the truth table.

A	B	Z
0	0	0
0	1	1
1	0	1
1	1	1
Truth table		

d) Proof the following Boolean expression "Theorems".
a) $X+X Y=X$

Proof:

$$
x+x y=x \cdot 1+x y=x(1+y)=x \cdot 1=x
$$

b) $X(X+Y)=X$

Proof:
$x(x+y)=x \cdot x+x . y=x+x y=x(1+y)=x .1=x$
c) $X \bar{Y}+Y=X+Y$

Proof:

$$
x \bar{y}+y=y+x \bar{y}=(y+x)(y+\bar{y})=(y+x) \cdot 1=y+x
$$

Homework: proof that
a) $(x+y)(x+\bar{y})=x$
b) $(x+\bar{y}) y=x y$

