

Objectives:-

- 1. Binary operators and their representations.
- 2. Relationships between Boolean expressions, Truth tables and Logic circuits.
- 3. Logic gates' postulates, laws and properties.

1. Binary operators and their representations

Boolean algebra is the basic mathematics needed for logic design of digital systems; Boolean algebra uses Boolean (logical) variables with two values (0 or 1).

"Two- valued Boolean algebra"

Basic operations:

The basic operations of Boolean algebra are *AND*, *OR*, and *NOT* (*complement*).
a) NOT operation (*NOT Gate*):-

$$\overline{1} = 0; \overline{0} = 1$$

- > The **not** operator is also called the *complement* or the *inverse*:
- $\triangleright \ \overline{\mathbf{x}}$ is the complement of \mathbf{x} .
- Output is *opposite* of input.
- > *Truth table*: truth table describes inputs and outputs in terms of 1_2 and 0_2 rather physical (voltage) levels.

Not gate representation

Truth table:

Input	Output
x	\overline{x}
0	1
1	0

l – high	
0 - low	

b) AND operation (*AND* gate).

> The output is 1 only if all inputs are 1, if any of the input is 0, then the output is 0.

> The truth table of **AND** gate (2-inputs, 1-output) as the following:

Inj	Output	
A	Y = A.B	
0	0 0	
0	0 1	
1	1 0	
1	1	1

The	AND	operation	is	referred	to	as	logical	
		mul	tip	lication				

c) OR operation (OR gate)

The output is 1 if A is 1 or if B is 1

> The truth table of **OR** gate (2-inputs, 1-output) as the following:

Inj	Output			
Α	A B			
0	0 0			
0	1	1		
1	0	1		
1	1	1		

OR operation is sometimes referred to as "inclusive OR" or logical addition.

d) NAND gate: (Not AND gate)

> The truth table of **NAND** gate (2-inputs, 1-output) as the following:

inp	outs	outj	puts
Α	B	Y = A. B	$Y1 = \overline{A.B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

e) NOR gate (Not OR gate):

The truth table of **NOR** gate (2-inputs, 1-output) as the following:

inj	puts	outj	puts
A	B $A+B$		$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

2. Relationships between Boolean expression, truth tables and logic circuits

\succ If one is given, we can get the other.

To draw a circuit from a Boolean expression:

- ✓ From the left, make an *input line* for each variable.
- ✓ Next, put a *Not* gate in for each variable, that appears negated in the expression.
- ✓ Still working, from left to right.

Example 2: A. $\overline{B} + \overline{(A+B)}$. B

3. Logic gate's postulates, laws and properties

Postulates are used to deduce the rules, theorems and properties.a) Postulates of Boolean algebra

Postulate	For OR Gate	For AND Gate				
Pl	A + 0 = A	$A \cdot 1 = A$				
P 2	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$				
P 3	A+B = B+A	$A \cdot B = B \cdot A$				
P 4	$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + B \cdot C = (A + B) \cdot (A + C)$				
Duality principle						

> *Duality principle* states that every algebraic expression is deducible if *the operators and the identity elements are interchanged.*

Identity elements:						
0	for or gate					
1	for and gate					

b) Boolean algebra theorems:

> There are six theorems of Boolean algebra:

Theorem	For OR Gate	For AND Gate		
T1: Idempotent laws	A + A = A	$A \cdot A = A$		
T2: operations with 0 and 1	A + 1 = 1	$\boldsymbol{A}\cdot\boldsymbol{0} = \boldsymbol{0}$		
T3: associative laws	A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$		
T4: de Morgan laws (inversion law)	$\overline{A+B} = \overline{A}.\overline{B}$	$\overline{A.B} = \overline{A} + \overline{B}$		
T5: Absorption laws	$A + A \cdot B = A$	$A \cdot (A + B) = A$		
T6: involution law	$\overline{\overline{A}} = A$			

> To *proof* these theorems and other logic expressions, we can use *two ways*:

[1] Truth table

Example 1: proof that $A + A \cdot B = A$

A	B	$A \cdot B$	$A + A \cdot B$
<mark>0</mark>	0	0	<mark>0</mark>
<mark>0</mark>	1	0	0
1	0	0	1
1	1	1	1

Example 2: verify the de Morgan's laws using a truth table.

A	B	Ā	B	A + B	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	<mark>0</mark>
					$\overline{A+B}$	$=\overline{A}\cdot\overline{B}$		$\overline{A \cdot B}$	$=\overline{A}+\overline{B}$

Some Details:

- The duality principle is formed by *replacing AND* with OR, OR with AND, 0 with 1, 1 with 0, variables and complements are left unchanged.
- de Morgan's laws Allow us to convert between types of gates; we can generalize them to n variables:

[2] Algebraically using basic theorems.

Example 1: verify that

a) $A + A \cdot B = A$ **b**) A(A + B) = A

Proof (a):

 $A + A \cdot B = A \cdot 1 + A \cdot B = A (1 + B) = A \cdot 1 = A$

Proof (b):

A(A+B) = A by duality.

Example 2

- a) $(A\overline{B} + 0) E + 1 = 1$
- **b)** $(A\overline{B} + 0) \overline{(A\overline{B} + 0)} = 0$
- c) An input *A* is inverted and applied to an *AND* gate. The other input is *B*. the output of the *AND* gate is applied to an *OR* gate. *A* is the second input to *OR* gate. *Draw the logic circuit and the truth table*.

Α	B	Ζ
0	0	0
0	1	1
1	0	1
1	1	1
Truth table		

Truth table

d) Proof the following Boolean expression "*Theorems*".

a) X + XY = X **Proof:** $x + xy = x \cdot 1 + xy = x (1 + y) = x \cdot 1 = x$ b) X (X + Y) = X **Proof:** $x(x + y) = x \cdot x + x \cdot y = x + xy = x(1 + y) = x \cdot 1 = x$ c) $X \overline{Y} + Y = X + Y$ **Proof:** $x \overline{Y} + y = y + x \overline{Y} = (y + x) (y + \overline{y}) = (y + x) \cdot 1 = y + x$

Homework: proof that

a)
$$(x + y)(x + \overline{y}) = x$$

b) $(x + \overline{y})y = xy$