## Digital System Design



Objectives:

1. Deriving of logical expression form truth tables.
2. Logical expression simplification methods:
a. Algebraic manipulation.
b. Karnaugh map (k-map).

## 1. Deriving of logical expression from truth tables

## Definitions:

Literal: Non-complemented or complemented version of a variable ( $\boldsymbol{A}$ or $\overline{\boldsymbol{A}}$ ).
Product term: a series of literals related to one another through the $\boldsymbol{A N D}$ operator (Example: $\boldsymbol{A} \cdot \overline{\boldsymbol{B}} \cdot \boldsymbol{C}$ ).

Sum term: A series of literals related to one another through the $\boldsymbol{O R}$ operator (Example: $(\boldsymbol{A}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}})$.

SOP form: (Sum -of-products form):
$>$ The logic-circuit simplification require the logic expression to be in SOP form , for example:

$$
A B+\bar{A} B \bar{C}+\bar{C} \bar{D}
$$

POS form (product-of-sum form):
$>$ This form sometimes used in logic circuit, example:

$$
(A+C) \cdot(C+\bar{D}) \cdot(\bar{B}+C)
$$

$>$ The methods of circuit simplification and design that will be used are based on SOP form.

## Canonical and standard form

> Product terms that consist of the variables of function are called "Canonical product terms" or "Minterms".
$>$ The term $\boldsymbol{A B} \bar{C}$ is a minterm in a three variable logic function, but will be a non-minterm in a four variable logic function.
> Sum terms which contain all the variables of a Boolean function are called "Canonical sum terms" or Maxterms".

Example: $A+\bar{B}+C$ is a maxterm in a three variable logic function.
$>$ for two variables $A$ and $B$, there are four combination: $\bar{A} \bar{B}, \bar{A} B, A \bar{B}, A B$ called minterms or standard products

| $\boldsymbol{A}$ | $\boldsymbol{B}$ | Minterm |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | $\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}$ |
| $\mathbf{0}$ | $\mathbf{1}$ | $\bar{A} B$ |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathrm{~A} \overline{\mathrm{~B}}$ |
| $\mathbf{1}$ | $\mathbf{1}$ | $A \bar{B}$ |

$>$ for $\boldsymbol{n}$ variables there are $\mathbf{2}^{\boldsymbol{n}}$ minterms

## Example: minterms and maxterms for 3 variables:

| inputs |  |  | Minterm | Designation | Maxterm | Designation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C |  |  |  |  |
| 0 | 0 | 0 | $\bar{A} \bar{B} \bar{C}$ | m0 | $A+B+C$ | M0 |
| 0 | 0 | 1 | $\bar{A} \bar{B} C$ | ml | $\boldsymbol{A}+\boldsymbol{B}+\bar{C}$ | M1 |
| 0 | 1 | 0 | $\bar{A} B \bar{C}$ | m2 | $A+\bar{B}+C$ | M2 |
| 0 | 1 | 1 | $\bar{A} B C$ | m3 | $A+\bar{B}+\bar{C}$ | M3 |
| 1 | 0 | 0 | $A \bar{B} \bar{C}$ | m4 | $\bar{A}+B+C$ | M4 |
| 1 | 0 | 1 | $A \bar{B} C$ | m5 | $\bar{A}+B+\bar{C}$ | M5 |
| 1 | 1 | 0 | $A B \bar{C}$ | m6 | $\bar{A}+\bar{B}+C$ | M6 |
| 1 | 1 | 1 | $A B C$ | m7 | $\bar{A}+\bar{B}+\bar{C}$ | M7 |

Two important properties:

* Any Boolean function can be expressed as a sum of minterms.
* Any Boolean function can be expressed as a product of minterms.


## Example: Majority function: (for 3 variables)

Output is one whenever majority of inputs is 1

| inputs |  |  | Output | Minterms SOP Form | > Four product terms, because, there are 4 rows with a 1 output. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | $B$ | C | F |  |  |
| 0 | 0 | 0 | 0 | ------ |  |
| 0 | 0 | 1 | 0 | ------ | al expression |
| 0 | 1 | 0 | 0 | ------ | $F=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C$ |
| 0 | 1 | 1 | 1 | $\bar{A} B C$ |  |
| 1 | 0 | 0 | 0 | ------ |  |
| 1 | 0 | 1 | 1 | $A \bar{B} C$ |  |
| 1 | 1 | 0 | 1 | $A B \bar{C}$ |  |
| 1 | 1 | 1 | 1 | $A B C$ |  |


| inputs |  |  | Output | Maxterms |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{A}$ | $B$ | $C$ | $\mathbf{F}$ | POS Form |$|$| 0 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $A+B+C$ |  |
| 0 | 0 | 1 |
| 0 | $A+B+\bar{C}$ |  |
| 0 | 1 | 0 |
| 0 | 0 | $A+\bar{B}+C$ |
| 0 | 1 | 1 |
| 1 | ---- |  |
| 1 | 0 | 0 |
| 1 | 0 | $\bar{A}+\boldsymbol{B}+\boldsymbol{C}$ |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| $l$ | 1 | ------ |
| 1 | 1 | 1 |

> Four sum terms, because, there are 4 rows with a 0 output.

Final expression:

$$
F=(A+B+C) \cdot(A+B+\bar{C}) \cdot(A+\bar{B}+C) \cdot(\bar{A}+B+C)
$$

Derivation of logical expression form truth tables

## Summary

$\checkmark$ Sum-of-product (SOP) form.
$\checkmark$ Product-of- sums (POS) form.

- SOPform:
- Write an $\boldsymbol{A} \boldsymbol{N} \boldsymbol{D}$ term for each input combination that produces a 1 output.
- Write the variable if its value is 1 , complement otherwise.
- OR the $\boldsymbol{A} \boldsymbol{N} \boldsymbol{D}$ terms to get the final expression.


## 2. logical expression simplification methods:

Two basic methods:
a) Algebraic manipulation:
> Use Boolean laws to simplify the expression: (difficult to use and don't know if you have the simplified form.
b) Karnaugh map (k-map) method:
$>$ Graphical method.

- Ease to use.
$>$ Can be used to simplify logical expressions with a few variables.
a) Algebraic manipulation


## Example 1:

Design a logic circuit that has three inputs, $A, B$ and $C$ and whose output will be high only when a majority of the input are high .(complete design procedure).

## Solution:

Step 1: set up the truth table (see previous section)
Step 2: write the AND term for each case where the output is a 1 :( see previous section)

Step 3: write the sum-of-products expression for the output

$$
F=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

Step 4: simplify the output expression
$>$ Find the common term(s): $\boldsymbol{A B C}$-common term.
$>$ Use the common term $(A B C)$ to factor with other terms:

$>$ Factoring the appropriate pairs of terms:

$$
\begin{gathered}
F=B C(\bar{A}+A)+A C(B+\bar{B})+A B(\bar{C}+C) \\
F=B C+A C+A B
\end{gathered}
$$

Step 5: implement the circuit for the final expression.


Example 2: simplify the Boolean function.

$$
F=A B+\bar{A} C+B C
$$

## Solution:

$$
\begin{aligned}
& F=A B+\bar{A} C+B C .1 \quad \text { (Common term) } \\
& =A B+\bar{A} C+B C(A+\bar{A}) \\
& =A B+A B C+\bar{A} C+\bar{A} B C \\
& =A B(\mathbf{1}+\boldsymbol{C})+\bar{A} C(\mathbf{1}+\boldsymbol{B}) \\
& =A B+\bar{A} C \text { (The result) }
\end{aligned}
$$

Example 3: simplify the following Boolean function to a minimum number of literals.

$$
X=B C+A \bar{C}+A B+B C D
$$

## Solution:

$$
\begin{aligned}
& X=B C(\mathbf{1}+D)+A \bar{C}+A B \\
& =B C+A \bar{C}+A B=B C+A(\bar{C}+B)
\end{aligned}
$$

Example 4: simplify the expression.

$$
Z=A \bar{B} \bar{C}+A \bar{B} C+A B C
$$

Solution: (the expression is in SOP form)

$$
\begin{aligned}
& Z=A \bar{B}(\bar{C}+C)+A B C \\
& =A \bar{B}(\mathbf{1})+A B C=A \bar{B}+A B C \\
& Z=A(\bar{B}+B C)=A(\bar{B}+B)(\bar{B}+C)=A(\bar{B}+C)
\end{aligned}
$$

Example 5: simplify the expression.

$$
Z=\bar{A} C(\overline{\bar{A} B D})+\bar{A} B \bar{C} \bar{D}+A \bar{B} C
$$

## Solution:

$\checkmark$ First, use Demorgan's theorem on the first term:

$$
\begin{aligned}
Z & =\bar{A} C(\overline{\bar{A}}+\bar{B}+\bar{D})+\bar{A} B \bar{C} \bar{D}+A \bar{B} C \\
Z & =\bar{A} C(A+\bar{B}+\bar{D})+\bar{A} B \bar{C} \bar{D}+A \bar{B} C
\end{aligned}
$$

$\checkmark$ Multiply, we get:

$$
\begin{aligned}
& Z=\bar{A} C A+\bar{A} C \bar{B}+\bar{A} C \bar{D}+\bar{A} B \bar{C} \bar{D}+A \bar{B} C \\
& \text { ( } \bar{A} A=0 \text { ) then } \\
& Z=\bar{A} \bar{B} C+\bar{A} \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} \bar{B} C
\end{aligned}
$$

$\checkmark$ Check for the largest common factor between any two or more product terms:

$$
\begin{array}{cc}
Z=\bar{B} C(\bar{A}+A) \\
\downarrow & \bar{A} \bar{D}(C+B \bar{C}) \\
\downarrow \\
\downarrow
\end{array}
$$

$\checkmark$ We get:

$$
Z=\bar{B} C+\bar{A} \bar{D}(B+C)
$$

$\checkmark$ The result can be obtained with other choices

Example 6: Find the complement of the following Boolean function:

$$
Z=(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})
$$

## Solution:

$\checkmark$ Use Demorgan's theorem:

$$
\begin{aligned}
& \bar{Z}=\overline{(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})} \\
& =\overline{(B \bar{C}+\bar{A} D)}+\overline{(A \bar{B}+C \bar{D})} \\
& =\overline{B \bar{C}} \cdot \overline{\bar{A} D}+\overline{A \bar{B}} \cdot \overline{C \bar{D}} \\
& =(\bar{B}+\overline{\bar{C}}) \cdot(\overline{\bar{A}}+\bar{D})+(\bar{A}+\overline{\bar{B}})(\bar{C}+\overline{\bar{D}}) \\
& =(\bar{B}+C) \cdot(A+\bar{D})+(\bar{A}+B) \cdot(\bar{C}+D)
\end{aligned}
$$

## $\checkmark$ It's not in standard form

## Example 7:

Express the following function in a sum of minterms and product of maxterms.

$$
Z=(A B+C)(B+A C)
$$

## a) Sum of minterms:

$\checkmark$ Multiply, we get:

$$
\begin{array}{ll}
Z=A B B+A A B C+B C+A C C & C+\bar{C}=1 \\
=A B+A B C+B C+A C & A+\bar{A}=1 \\
=A B C+A B(C+\bar{C})+B C(A+\bar{A})+A C(B+\bar{B}) & B+\bar{B}=1 \\
=A B C+A B C+A B \bar{C}+A B C+\bar{A} B C+A B C+A \bar{B} C & A+A=A \\
Z=A B \bar{C}+A B C+\bar{A} B C+A \bar{B} C &
\end{array}
$$

$\checkmark$ So, we can write:

$$
Z(A, B, C)=\sum m(3,5,6,7)
$$

| inputs |  |  | Minterm | $\mathbf{z}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ |  |  |
| 0 | 0 | 0 | m 0 | 0 |
| 0 | 0 | 1 | m 1 | 0 |
| 0 | 1 | 0 | m 2 | 0 |
| 0 | 1 | 1 | m 3 | 1 |
| 1 | 0 | 0 | m 4 | 0 |
| 1 | 0 | 1 | m 5 | 1 |
| 1 | 1 | 0 | m 6 | 1 |
| 1 | 1 | 1 | m 7 | 1 |

Sum of minterms

## b) Sum of maxterms

$\checkmark$ Using distributive law:

$$
(A+B C)=(A+B)(A+C)
$$

$\checkmark$ In the

$$
Z=(A B+C)(B+A C)
$$

$\checkmark$ We get:

$$
\begin{aligned}
& =(A+C)(B+C)(B+A)(B+C) \\
& =(A+B)(B+C)(C+A) \\
& Z=(A+B)(B+C)(C+A)
\end{aligned}
$$

- In $\boldsymbol{A}+\boldsymbol{B}$ we need $\boldsymbol{C}$
- In $\boldsymbol{B}+\boldsymbol{C}$ we need $\boldsymbol{A}$
- In $\boldsymbol{C}+\boldsymbol{A}$ we need $\boldsymbol{B}$
$\checkmark$ We can write

$$
\begin{aligned}
& (A+B)=(\boldsymbol{A}+\boldsymbol{B}+\mathbf{0})=(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C} \overline{\boldsymbol{C}}) \\
& (\boldsymbol{A}+\boldsymbol{B})=(A+B+C)(A+B+\bar{C}) \\
& (B+C)=(\boldsymbol{B}+\boldsymbol{C}+\mathbf{0})=(\boldsymbol{B}+\boldsymbol{C}+\boldsymbol{A})(\boldsymbol{B}+C+\bar{A}) \\
& (C+A)=(C+A+B)(C+A+\bar{B})
\end{aligned}
$$

$\checkmark$ Substitute all of these term in $\boldsymbol{Z}$, we get:

$$
Z=(A+B)(B+C)(C+A)
$$

$$
\begin{aligned}
& =(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C})(\boldsymbol{A}+\boldsymbol{B}+\overline{\boldsymbol{C}})(\boldsymbol{B}+\boldsymbol{C}+\boldsymbol{A})(\boldsymbol{B}+\boldsymbol{C}+\overline{\boldsymbol{A}})(\boldsymbol{C}+\boldsymbol{A} \\
& +\boldsymbol{B})(\boldsymbol{C}+\boldsymbol{A}+\overline{\boldsymbol{B}}) \\
& Z=(A+B+C)(A+B+\bar{C})(B+C+\bar{A})(C+A+\bar{B}) \\
& Z=(A+B+C)(A+B+\bar{C})(\bar{A}+B+C)(A+\bar{B}+C) \\
& Z=M 0 \cdot M 1 \cdot M 4 \cdot M 2
\end{aligned}
$$

| inputs |  |  | $Z$ | Maxterm |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ |  |  |
| 0 | 0 | 0 | 0 | $M 0$ |
| 0 | 0 | 1 | 0 | $M 1$ |
| 0 | 1 | 0 | 0 | $M 2$ |
| 0 | 1 | 1 | 1 | $M 3$ |
| 1 | 0 | 0 | 0 | $M 4$ |
| 1 | 0 | 1 | 1 | $M 5$ |
| 1 | 1 | 0 | 1 | $M 6$ |
| 1 | 1 | 1 | 1 | $M \mathbf{M}$ |

Example 8: simplify the logic circuit shown in the following figure.


## Solution:

$\checkmark$ The output of the circuit is

$$
Z=a b c+a \bar{b} \cdot(\overline{\bar{a} \bar{c}})
$$

$\checkmark$ Using Demorgan's law and multiply out all terms:

$$
Z=a b c+a \bar{b}(\overline{\bar{a}}+\overline{\bar{c}})
$$

$Z=a b c+a \bar{b}(a+c)$
$Z=a b c+a \bar{b} a+a \bar{b} c$
$Z=a b c+a \bar{b} a+a \bar{b} c$
$Z=a b c+a \bar{b}+a \bar{b} c$
SOP Form
$Z=a b c+a \bar{b}+a \bar{b} c$
$Z=\boldsymbol{a c}(\boldsymbol{b}+\bar{b})+\boldsymbol{a} \overline{\boldsymbol{b}}$
$Z=a c .1+a \bar{b}=a c+a \bar{b}=a(c+\bar{b})$


