Student Name: Student Number: Serial Number:

Final Exam, First Semester: 2018/2019
Dept. of Computer Engineering

Course Title:	Microprocessors	Date:	$21 / 01 / 2019$
Course No:	0630313	Time Allowed:	2 hours
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	8

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 7 questions totaling 40 marks.
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Basic notions: The aim of the questions in this part is to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of IA-32 Processor Architecture, Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Arrays and Procedures.

Question 1 Multiple Choices

(10 marks)
Identify the choice that best completes the statement or answers the question.

1) The first processor that includes real mode in the Intel microprocessor family was \qquad
a) 8085
b) $\mathbf{8 0 8 6}$
c) $\mathbf{8 0 2 8 6}$
d) $\mathbf{8 0 3 8 6}$
2) Which of the following is an invalid instruction?
a) add $d x, d x$
b) MOV AX, CS
c) sub bar, 5
d) MOV AL, DI
3) The directive that can be used to declare variables to store binary-coded decimal numbers (packed BCD Integers) is \qquad
a) SWORD
b) REAL10
c) QWORD
d) TBYTE
4) The variable definition smallArray byte 2Ch, 5 DUP ("exam") will reserve ------- bytes of memory.
a) 21
b) 26
c) 6
d) None of above
5) The output of the linker (LINK command) is stored in a file with the extension
a) . lis
b) .obj
c). $\ln k$
d) .exe
6) What will be the values of the Sign, and Zero flags after the following instructions have executed?
mov ax,620h
sub ah,0F6h
a) $S=0, Z=1$
b) $\quad S=0, Z=0$
c) $\mathrm{S}=1, \mathrm{Z}=0$
d) $\quad S=1, Z=1$
7) The conditional branch instruction JNS performs the operations when if \qquad
a) $\mathbf{Z F}=\mathbf{0}$
b) $\mathbf{P F}=0$
c) $\mathbf{S F}=\mathbf{0}$
d) $\mathrm{CF}=0$
8) The instruction TEST is most similar to-
b) AND
a) $O R$
d) NOT
9) The interrupt vector for INT $\mathbf{1 7 H}$ is stored in memory at:
a) 0005 CH
b) $\mathbf{0 0 0 6 8 H}$
c) 000 C 5 H
d) $\mathbf{0 0 0 1 7 \mathrm { H }}$
10) Which of the following are performed when an interrupt occurs:
(I) FLAGS register is pushed to the stack
(II) CS register is pushed to the stack
(III) IP register is pushed to the stack
a) (I) and (II) and (III)
b) (I) and (II) only
c) (II) and (III) only
d) (I) and (III) only
a) Explain 8086 flag register?
b) What is the use of Interrupt vector table of 8086 microprocessor?
(2 marks)
c) What is an instruction queue? Explain?
(1 mark)

Familiar and Unfamiliar problems solving: the aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Arrays and Procedures.

Question 3

 (4 marks)Write instruction(s) to perform the following tasks:

1)	Multiply AX by 5	
2)	Three different instructions that will clear the contents of register CL	
3)	Jump to label 'HELP' if AX is negative	

a) If we declare the three arrays $\mathbf{A W}, \mathbf{B W}$, and $\mathbf{C W}$ of words by

AW	DW	$000 \mathrm{Ah}, 010 \mathrm{Ah}, 020 \mathrm{Ah}, 030 \mathrm{Ah}, 040 \mathrm{Ah}$
BW	DW	$000 \mathrm{Bh}, 010 \mathrm{Bh}, 020 \mathrm{Bh}, 030 \mathrm{Bh}$
CW	DW	$000 \mathrm{Ch}, 010 \mathrm{Ch}, 020 \mathrm{Ch}, 030 \mathrm{Ch}, 040 \mathrm{Ch}, 050 \mathrm{Ch}$

Fill in the contents of the specified registers in the following code as hex-digit numbers:

| mov ax, $[B W+2] ;$ | $a x=$ |
| :--- | :--- | :--- |
| mov ax, $[A W+20] ;$ | $a x=$ |
| mov ax, $[B W-4] ;$ | $a x=$ |
| mov ax, $1234 h$ | |
| xchg ah, al; | |
| MOV BX, B372h $=$ | |
| MOVZX \quad EAX, BX; | $E A X=$ |
| MOV BX, B372h | |
| MOVSX \quadDX, BL; $;$ | DX $=$ |

b) Use the following data definitions:
(3 marks)

Arr_Bytes	BYTE	0FFh,20h,0AAh,3Dh
Arr_Words	WORD	$11 \mathrm{~h}, \mathbf{3 B h}, \mathbf{1 7 h}, 22 \mathrm{~h}, 99 \mathrm{~h}$
Arr_DoubleWords	DWORD	$1,2,3,4,5$
Ptr_DoubleWords	DWORD	Arr_DoubleWords

Fill in the requested register values on the right side of the following instruction sequence:
mov esi, OFFSET Arr_Bytes

```
mov al, [esi];
    a. AL=
                            -----------
mov al, [esi+3];
b. AL =
```

\qquad

```
mov esi, OFFSET Arr_Words + 2
mov ax, [esi];
c. }\mathbf{AX}
                            ----------
mov edi, }
mov edx, [Arr_DoubleWords + edi]; d. EDX =
    ----------
mov edx, Arr_DoubleWords[edi] ;
e. EDX =
mov ebx, Ptr_DoubleWords
mov eax, [ebx+4];
    f. EAX =
```

Write an Assembly program to find number of times letter 'e' exist in the string 'exercise'. Store the count at memory variable ans.
In your code:

- Use real mode programming.
- Use indirect addressing memory mode.
- Terminate your program using the termination process of interrupt INT 21, function number 4Ch.

Solution

Consider the following Boolean expression:

$$
\text { IF }((\mathrm{X}>Y) \text { AND }(Z<T)) \text { OR }(A \neq B) \text { THEN } C=\mathrm{D}
$$

Write an assembly language code to implement the above expression.
Assume that all variables are declared and of type WORD.

Solution

Question 7

Write an Assembly program which separates odd and even numbers from given $\mathbf{1 0} \mathbf{8 - b i t}$ data stored in memory locations and store in different arrays and add them individual in Assembly Language.

Solution

