Philadelphia University

Faculty of Engineering

Student Name: Student Number: Serial Number:

Final Exam, Second Semester: 2018/2019 Dept. of Computer Engineering

Course Title:	Microprocessors	Date:	01/06/2019
Course No:	0630313	Time Allowed:	2 hours
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	8

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 5 questions totaling 40 marks.
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Basic notions: The aim of the questions in this part is to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of IA-32 Processor Architecture, Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Interrupts, Arrays and Procedures.

Question 1 Multiple Choices

(10 marks)

Identify the choice that best completes the statement or answers the question.

	_	_		
1)	Which microprocessor	accepts the program	written for 8086	without any changes?

a) 8085

b) . 8087

c) 8088

d) None of the above

2) One of the following is **not** a valid segment address

a) 00000

b) E0840

c) 8CE90

d) 8CE91

3) Which group of instructions do not affect the flags?

a) Arithmetic operations

b) Branch operations

c) Logic operations

d) Data transfer operations

4) Which of the following will generate assembly **error**?

a) varl BYTE 1101b, 22, 35

b) var3 BYTE '\$', '98778',

c) var2 BYTE "ABCDE", 18

d) None of the above

TUILODD

5) In the following data definition, assume that **X2** begins at offset **4000h**. What is the offset of the third value (**66**)?

	A	DWOKD	31, 43	3, 31, 00, 11	
a)	4004h		b)) 4008	
c)	400A		d)) 400C	

27 40 51 66 77

6)	can	a) b) c)	exed regist BX, SI, D SI, DI, , I AX, SI, D AX, BX, O	I OS OI	ıl ad	ldressing mode.	
7)	Which of the following	ng is an illega	1 8086 instr	ruction?			
-	a)	add ax, [si	i]	b)	dec	c [si]	
	c)	mov ax, [s	i]	d)	aDd	d bx, [si]	
8)	From hardware view expression:	point, the over	flow flag	(OF) can	be in	mplemented using the following logic	;
	•	a)	OF = CF	AND M	ISB		
		b)	OF = CF	OR MS	B		
		c)	OF = CF	XOR IV	ISB		
		d)	None of t	he abov	e		
9)	Assume that the AX the instruction:	register contain	s the value	6 521 H . V	Vhat	t will be the contents of AX after exec	ution
		CMP I	LL, AH				
	a)	65 B (СН	b)		BC21 H	
	c)	4421	H	d)		6521 H	
10	What will be the fina	l value of ax ?					
	•	mov ax, 6					
		mov ecx,	1				
		Ll:					
		inc	ax				
		loop L1					
	a) 11	_		b)	10)	
	c) 9			ď)	No	one of the above	

Familiar and Unfamiliar problems solving: the aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Interrupts, Arrays and Procedures.

ana Proceaures.	
Question 2	(10 marks)
a) Explain the following terms:	(1.5 marks)

Term	Description	
Virtual memory:		
Real mode		
Protected mode		
	ing assembler directives with examples DWORD OFFSET ENDP EQU SIZEOF	(2.5 marks)
	Solution	

I			
1			
I			
1			
1			
I			
1			
1			
1			
1			
1			
1			
1			
1			

Solution
d) Explain the various types interrupts in 8086 microprocessor. (2.5 marks)
Solution

Question 3

(10 marks)

a) Use the following data declarations.

(2 marks)

.Data

Goal Byte 1, 2, 3, 4

Mail DWord 12345678h, 34567890h

MailSize = lengthof Mail
Name Byte "Ahmed", 0

Indicate whether or not each of the following assembly code is **valid**:

Ñ	Instruction	Answer
1)	CMP AL, GOAL	
2)	Sub SS, MailSize	
3)	MOV [1234H] ,AX	
4)	xchg Goal, Name	

b) Where indicated, write down the values of the **Carry, Sign, Zero**, and **Overflow** flags after each instruction has executed: (2 marks)

mov ax, 7FF0h

c) Use the following data declarations.

(2 marks)

Fill in the contents of the specified registers in the following code:

$$mov al, [X +3]$$
; $AL = ------$

$$mov ax,[Y+2]$$
; $AX = ------$

mov esi,4

mov edx,
$$Z$$
 [esi*TYPE Z]; edx = ------

d) What will be the final value stored in memory (SUM) after the execution of the following assembly (2 marks) code .DATA 3, -1, 4, 2, 5, 9, -2, -7 ? **SByte NUMBERS** SUM **SByte** .CODE .STARTUP **MOV SI, OFFSET NUMBERS** MOV AX, 0H MOV CX, 4 L1: MOV BL, [SI] ADD AL, BL ADD SI, 2 LOOP L1 MOV SUM, AL Solution **e)** What exactly will be displayed by the following assembly program? (2 marks) **INCLUDE Irvine32.inc** .DATA \mathbf{X} **DWORD** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 .CODE **MAIN PROC** mov eax, X call WriteHex call CrLf mov eax, [X] call WriteHex call CrLf mov esi, 8 mov eax, X [esi] call WriteHex call CrLf mov esi, OFFSET X mov eax, [esi] call WriteHex call CrLf **EXIT MAIN ENDP END MAIN** Solution

Question 4

(4 marks)

Write a complete assembly program that computes the following equations

$$Y = X1 + X2 - C$$
$$Z = X3 + X4$$

In your code:

- Declare the following uninitialized variables:
 - 2-byte signed integers: Y, X1, X2.
 - 2-byte unsigned integers: Z, X3, X4.
- ❖ Declare the constant symbolic **C** and assign it the value **200**.
- ❖ In code section, assign variables **X1=FFh**, **X2=-10**, **X3=555**, **X4** =**100**
- Compute Y = X1 + X2 C and Z = X3 + X4.
- ❖ Assume that **real Addressing-mode** is used.
- **...** Use **one segment** for both code and data sections.

Solution	

Question 5 (6 marks)

Write an Assembly Language program to **compare** two strings and **display** if they are equal. The program should:

- Enter two strings (**100** characters for each string) from keyboard.
- Display the message "Strings are equal" when the strings are equal and the message "Strings are not equals" otherwise.
- Use Protected Mode Programming.
- Use Indirect Addressing Mode.
- Use **Irvine32** library for input and output.

Solution