Philadelphia University
Faculty of Engineering

Student Name: Student Number: Serial Number:

Final Exam, Second Semester: 2018/2019
Dept. of Computer Engineering

Course Title:	Microprocessors	Date:	$01 / 06 / 2019$
Course No:	0630313	Time Allowed:	2 hours
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	8

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 5 questions totaling 40 marks.
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Basic notions: The aim of the questions in this part is to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of IA-32 Processor Architecture, Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Interrupts, Arrays and Procedures.

Question 1 Multiple Choices

(10 marks)

Identify the choice that best completes the statement or answers the question.

1) Which microprocessor accepts the program written for $\mathbf{8 0 8 6}$ without any changes?
a) 8085
b) . 8087
c) $\mathbf{8 0 8 8}$
d) None of the above
2) One of the following is not a valid segment address
a) 00000
b) E0840
c) 8 CE 90
d) 8CE91
3) Which group of instructions do not affect the flags?
a) Arithmetic operations
b) Branch operations
c) Logic operations
d) Data transfer operations
4) Which of the following will generate assembly error?
a) varl BYTE 1101b, 22, 35
b) var3 BYTE '\$','98778',
c) var2 BYTE "ABCDE", 18
d) None of the above
5) In the following data definition, assume that $\mathbf{X} \mathbf{2}$ begins at offset $\mathbf{4 0 0 0 h}$. What is the offset of the third value (66)?

X2	DWORD	37, 49, 51, 66, 77	
a)	$\mathbf{4 0 0 4 h}$		b)
c)	400 A		d)

6) \qquad can be used as indexed registers in real addressing mode.
a) $\mathbf{B X}, \mathrm{SI}, \mathrm{DI}$
b) SI, DI, , DS
c) $\mathrm{AX}, \mathrm{SI}, \mathrm{DI}$
d) $\mathbf{A X}, \mathbf{B X}, \mathbf{C X}$
7) Which of the following is an illegal 8086 instruction?
a) add ax, [si]
b) dec [si]
c) movax, [si]
d) $\mathrm{aDd} \mathrm{bx},[\mathrm{si}]$
8) From hardware viewpoint, the overflow flag (OF) can be implemented using the following logic expression:
a) $\mathrm{OF}=\mathrm{CF}$ AND MSB
b) $\mathbf{O F}=\mathbf{C F}$ OR MSB
c) $\mathbf{O F}=\mathbf{C F} \mathbf{X O R}$ MSB
d) None of the above
9) Assume that the $\boldsymbol{A} \mathbf{X}$ register contains the value $\mathbf{6 5 2 1} \mathbf{H}$. What will be the contents of $\boldsymbol{A X}$ after execution the instruction:

CMP AL, AH			
a)	$65 B C H$	b)	BC21 H
c)	4421 H	d)	6521 H

10) What will be the final value of $\mathbf{a x}$?
mov ax, 6 movecx, 4 Ll: inc ax loop Ll
a) 11
b) 10
c) 9
d) None of the above

Familiar and Unfamiliar problems solving: the aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Assembly Language Fundamentals: Instructions, Directives, Identifiers, Defining Data, Symbolic Constants, Data Transfers, Addressing, and Arithmetic instructions Addressing Modes, Conditional and Unconditional instructions, Stack, Pointers, Interrupts, Arrays and Procedures.
Question 2
(10 marks)
a) Explain the following terms:

Term	
Virtual memory:	
Real mode	
Protected mode	

b) Discuss the following assembler directives with examples
(2.5 marks)

DWORD
OFFSET
ENDP
EQU
SIZEOF
c) Explain Memory Models that can be used in assembly language.

Question 3

a) Use the following data declarations.
.Data

Goal	Byte	1, 2, 3, 4
Mail	DWord \quad 12345678h, 34567890h	
MailSize	$=$	lengthof Mail
Name	Byte	"Ahmed", 0

Indicate whether or not each of the following assembly code is valid:

$\tilde{N} \tilde{N}$	Instruction	Answer
1)	CMP AL, GOAL	
2)	Sub SS, MailSize	
3)	MOV [1234H] ,AX	
4)	xchg Goal, Name	

b) Where indicated, write down the values of the Carry, Sign, Zero, and Overflow flags after each instruction has executed:
(2 marks)
mov ax, 7FF0h
add AL, 10h;
CF = \qquad $\mathbf{S F}=$ \qquad $\mathbf{Z F}=$ \qquad OF = \qquad
add $\mathrm{AH}, \mathbf{1}$; $\quad \mathbf{C F}=$ \qquad SF = \qquad ZF = \qquad OF = \qquad
add ax, 2 ;
CF $=$ \qquad SF = \qquad $\mathbf{Z F}=$ \qquad OF = \qquad
c) Use the following data declarations.
(2 marks)

\mathbf{X}	BYTE	10h,20h, 30h, 40h,50h, 60h, 70, 'a',0a
Y	WORD	100h,200h, $300 \mathrm{~h}, 400 \mathrm{~h}$
Z	DWORD	10000h, $20000 \mathrm{~h}, 30000 \mathrm{~h}, 40000 \mathrm{~h}, 50000 \mathrm{~h}, 6000$

Fill in the contents of the specified registers in the following code:

```
mov al,[ X +3] ;
AL =
                                -------
mov ax,[Y+2] ;
AX =
```

\qquad

```
mov eax, [Z+TYPE arrayD];
EAX =
                            -------
mov esi,4
mov edx, Z [esi*TYPE Z];
edx =
```

\qquad
d) What will be the final value stored in memory (SUIM) after the execution of the following assembly code
.DATA
NUMBERS SByte 3, -1, 4, 2, 5, 9, -2,-7
SUM
SByte
?
.CODE
.STARTUP
MOV SI, OFFSET NUMBERS
MOV AX, OH MOV CX, 4
Ll:
MOV BL, [SI]
ADD AL, BL
ADD SI, 2
LOOP L1
MOV SUM, AL
Solution
e) What exactly will be displayed by the following assembly program?

INCLUDE Irvine32.inc
.DATA
$X \quad$ DWORD $\quad 1,2,3,4,5,6,7,8,9,10$
.CODE
MAIN PROC
mov eax, X call WriteHex call CrLf mov eax, [X] call WriteHex call CrLf mov esi, 8 mov eax, X [esi] call WriteHex call CrLf mov esi, OFFSET X mov eax, [esi] call WriteHex call CrLf EXIT
MAIN ENDP
END MAIN

Question 4

Write a complete assembly program that computes the following equations

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{X} \mathbf{1}+\mathbf{X} \mathbf{2}-\mathbf{C} \\
& \mathbf{Z}=\mathbf{X} \mathbf{3}+\mathbf{X} \mathbf{4}
\end{aligned}
$$

In your code:

* Declare the following uninitialized variables:
- 2-byte signed integers: Y, X1, X2 .
- 2-byte unsigned integers: Z, X3, X4.
* Declare the constant symbolic \mathbf{C} and assign it the value 200.
* In code section, assign variables $\mathbf{X 1}=\mathbf{F F h}, \mathbf{X 2}=\mathbf{- 1 0}, \mathbf{X} 3=555, \mathbf{X 4}=\mathbf{1 0 0}$
* Compute $\mathbf{Y}=\mathbf{X 1}+\mathbf{X} \mathbf{2}-\mathbf{C}$ and $\mathbf{Z}=\mathbf{X} \mathbf{3}+\mathbf{X} 4$.
* Assume that real Addressing-mode is used.
* Use one segment for both code and data sections.

Question 5

Write an Assembly Language program to compare two strings and display if they are equal.
The program should:

- Enter two strings ($\mathbf{1 0 0}$ characters for each string) from keyboard.
- Display the message "Strings are equal" when the strings are equal and the message "Strings are not equals" otherwise.
- Use Protected Mode Programming.
- Use Indirect Addressing Mode.
- Use Irvine32 library for input and output.

Solution

