# Philadelphia University Faculty of Engineering 

Marking Scheme

# Examination Paper <br> BSc CEE <br> Signals and Systems (650320+640543) 

Second Exam
First semester
Date: 07/01/2020
Section 1
Weighting $20 \%$ of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Saleh Saraireh

## Marking Scheme <br> Signals and Systems (650320+640543)

The presented exam questions are organized to overcome course material through 4 questions.
The all questions are compulsory requested to be answered.

## Marking Assignments

Question 1 This question is attributed with 5 marks if answered properly; the answers are as following:

1) For a discrete linear time-invariant system, the system response can be written in terms of convolution as

| a) | $y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[k]$ |
| :--- | :--- |
| b) | $y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[n+k] x[n-k]$ |
| c) | $y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$ |
| d) | $y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n+k]$ |

2) If $h 1, h 2$ and $h 3$ are cascaded (series connection), and $h 1=\boldsymbol{u}(t), h 2=\boldsymbol{e x p}(t)$ and $h 3=\boldsymbol{\operatorname { s i n }}(\boldsymbol{t})$, find the overall impulse response
a) $\sin (t) * \exp (t) * u(t)$
b) $\quad \sin (t)+\boldsymbol{\operatorname { x x p }}(t)+\boldsymbol{u}(t)$
c) $\quad u(t) * \sin (t)$
d) all of the mentioned
3) The linear time-invariant system with $h(t)=4 e^{-2 t} u(t)$
a) Stable, causal, and memeoryless
b) Stable, but not causal
c) Stable, causal, but has memory
d) Not stable
4) What is the equation $\mathbf{x}(\mathbf{t})=\sum_{\mathbf{k}=-\infty}^{\infty} \mathbf{D}_{\mathbf{k}} \mathrm{e}^{\mathrm{j} \boldsymbol{k} \omega \mathbf{t}}$ called?
a) Analysis equation
b) Synthesis equation
c) Frequency domain equation
d) Discrete equation
5) Choose the condition from below that is not a part of Dirichlet's conditions
a) If it is continuous then there are a finite number of discontinuities
a) in the period $T$
b) It has a finite number of positive and negative maxima in the period $T$
c) It has a finite average value over the period $T$
d) It is a periodic signal

Question 2: This question is attributed with 6 marks if answered properly,
(3 marks)

## Solution

a) $h[n]=\cos \left(\frac{\pi}{8} n\right)\{u[n]-u[n-10]\}$

The system has memory, causal and stable
b) $h(t)=e^{-2 t} u(t-1)$

The system has memory, causal and stable
b)

| Solution |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} y[0] \\ y[1] \\ y[2] \\ y[3] \\ y[4] \\ y[5] \end{gathered}$ |  | * | $x[0]$ | x[1] | $x[2]$ |
|  |  |  |  |  |  |
|  |  | 를 | 0 | 0 | 0 |
|  | 0 | ミ- | 1 | 1 | 1 |
|  | 1 | ミ- | 1 | 1 | 1 |
|  | 2 | $\cong 0$ | 0 | 0 | 0 |
|  |  |  |  |  |  |
|  | 1 |  |  |  |  |
|  |  | onvolu | O Us | g Ar | Me |

Question 3: This question is attributed with 8 marks if answered properly,
a)

Solution

```
Given Sienal x(x) = cos(\me) + 4 sim(6me)
    Period of cos(2rct) is TI =1
    Period of sin(Grct) is }\mp@subsup{T}{2}{}=1/
    The Fundamental period >(t) is T = Isec
```




```
    Fourier Series representation is
```



Comparing with above equation
$X(k)= \begin{cases}-\frac{2}{j} & k=-3 \\ \frac{1}{2} & k=-1 \\ \frac{1}{2} & k=1 \\ \frac{2}{j} & k=+3 \\ 0 & \text { otherwise }\end{cases}$
b)
(6 marks)

## Solution

Solution: Let $f(x)=\frac{a_{0}}{2}+\sum_{n=1} a_{n} \cos n x+\sum_{n=1} b_{n} \sin n x$
Then Euler's constants $a_{0}, a_{n}$ and $b_{n}$ are given by

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) d x=\frac{1}{\pi}\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=-\frac{2 \pi^{2}}{3} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x=\frac{1}{\pi}\left[\left(x-x^{2}\right)\left(\frac{\sin n x}{n}\right)-(1-2 x)\left(-\frac{\cos n x}{n^{2}}\right)+(-2)\left(-\frac{\sin n x}{n^{3}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[(1-2 \pi) \frac{\cos n \pi}{n^{2}}-(1+2 \pi) \frac{\cos n \pi}{n^{2}}\right]=\frac{-4(-1)^{n}}{n^{2}} \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \sin n x d x=\frac{1}{\pi}\left[\left(x-x^{2}\right)\left(-\frac{\cos n x}{n}\right)-(1-2 x)\left(-\frac{\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[-\left(\pi-\pi^{2}\right) \frac{\cos n \pi}{n}-2 \frac{\cos n \pi}{n^{3}}+\left(-\pi-\pi^{2}\right) \frac{\cos n \pi}{n}+2 \frac{\cos n \pi}{n^{3}}\right]=\frac{-2(-1)^{n}}{n}
\end{aligned}
$$

Therefore the Fourier series for $f(x)=x-x^{2}$ is

$$
\begin{aligned}
& f(x)=x-x^{2}=-\frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x \\
\therefore & x-x^{2}=-\frac{\pi^{2}}{3}+4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\ldots \ldots\right]+2\left[\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\ldots \ldots\right]
\end{aligned}
$$

Question 4: This question is attributed with 3 marks if answered properly,

## Solution

$\mathrm{kx}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right] ; \%$ time indices where x is nonzero $x=\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right] ; \%$ Sample values for DT sequence $x$ kh = [-1 012 3]; \% time indices where $y$ is nonzero
h = [3 1-2 3-2]; \% Sample values for DT sequence y
$y=\operatorname{conv}(x, h) ; \%$ Convolve $x$ with $h$
ky = kx(l)+kh(l): kx(length(kx))+kh(length(kh));
$\%$ ky= time indices for $y$

