# Philadelphia University Faculty of Engineering 

## Marking Scheme

Examination Paper<br>Department of CE

Module: Microprocessors (630313)

First Exam
Second Semester
Date: 02/04/2019
Section 1
Weighting $20 \%$ of the module total

Lecturer:
Coordinator:
Internal Examiner:
Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Naser Halasa

## Marking Scheme

## Microprocessors (630313)

The presented exam questions are organized to overcome course material, the exam contains 5 questions; all questions are compulsory requested to be answered. Thus, the student is permitted to answer any question out of the existing ones in this section.

## Marking Assignments

The following scheme shows the marks assignments for each question. They show also the steps for which a student can get marks along the related procedure he/she achieves.
Question 1This question is attributed with 5 marks, if answered properly, The answer for this question as the following:

1) During which phase of the instruction execution cycle is the program counter (IP register) incremented?
a) decode
b) execute
c) operand fetch
d) fetch
2) The size of each segment in $\mathbf{8 0 8 6}$ is
a) 16 kb
b) $\mathbf{2 4} \mathbf{~ k b}$
c) 50 kb
d) 64 kb
3) The Overflow flag is based on signed arithmetic.
a) True
b) False
4) Which of these values is the most acceptable for the data type REAL4?
a)
1275
b) 'Q'
c) $\quad 23.26$
d) "Jennifer",0
5) One of the following memory models combines the data and code parts:
a) Small
b) Tiny
c) Meduim
d) Huge

Question 2This question is attributed with 3 marks if answered properly, The answer for this question as the following:

## Solution

enerate 16-bit IMS-DOS Programs
$\checkmark$ Advantages

- enables calling of MS-DOS and BIOS functions
- no memory access restrictions
$\checkmark$ Disadvantages
- must be aware of both segments and offsets
- cannot call Win32 functions (Windows 95 onward)
- limited to 640K program memory
$\checkmark$ Requirements
- INCLUDE Irvine16.inc
- Two additional instructions are inserted at the beginning of the startup procedure (main)
Initialize DS to the data segment using predefined MASM constant @data:: movax,@data movds,ax

Question 3 This question is attributed with 5 marks, if answered properly. The answer for this question as the following:
a)

| $\tilde{\mathbf{N}}$ | Instruction | Answer |
| :---: | :--- | :---: |
| 1) | mov wordl, byte2 | I |
| 2) | mov word2,10000h | I |
| 3) | mov si, ds | L |
| 4) | movzx ax, bytel | L |
| 5) | movsx dl,al | I |

b)

| mov dx, word3 | DX = 7FFFh |
| :--- | :--- |
| movsx eax,bytel | EAX = FFFFFFFFh |
| mov dh, al | DH = FFh |
| mov ax,[word3+2] | AX = 8000h |
| mov eax, [word3+4] | EAX = I (illegal) |

Question 4 This question is attributed with 3 marks, if answered properly. The answer for this question as the following:

| Original Program | Your answer |
| :--- | :--- |
| INCLUDE irvine32.inc | INCLUDE irvine32.inc |
| -data | -data |
| arrayA word 4Ah, 3Ch, 2h, 5 DUP (1h) | arrayA word 4Ah, 3Ch, 2h, 5 DUP (1h) |
| varl word ffffh | varl word 0ffffh |
| .code | .code |
| main PROC | main PROC |
| mov cx,4Ch | mov cx,4Ch |
| xchg cx, arrayA+4 | xchg cx, arrayA+4 |
| mov ax, arrayA+5 | mov ax, arrayA+5 |
| mov bl, varl | mov bx, varl |
| add ax, bx | add ax, bx |
| call dumpregs | call dumpregs |
| exit | exit |
| main ENDP | main ENDP |
|  | end main |

Question 5 This question is attributed with 4 marks, if answered properly. The complete code for this question as the following:

## Solution

Title Simple Arithmetic
.data

| J | sword | $?$ |
| :--- | :--- | :--- |
| K | sword | $?$ |
| L | sword | $?$ |
| U1 | word | $?$ |
| U2 | word | $?$ |
| U3 | word | $?$ |

(l mark)
.code
mov J, 3
mov K, -2
mov U1, 254
mov U2, 22
mov ax, J
add ax, K
mov $L$, ax
mov ax, ul
add ax, u2
mov u3, ax
main PROC
main ENDP
END main

