

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Neural Networks and Fuzzy Logic (630514)

Final Exam

First semester

Date: 31/01/2016

Section 1

Weighting 40% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Mohammed Mahdi

Marking Scheme Neural Networks and Fuzzy Logic (630514)

The presented exam questions are organized to overcome course material through 6 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 12 marks if answered properly; the answers are as following:

1) What are the advantages of biological neural networks (BNNs) compared to conventional Von Neumann computers?

(i) BNNs have the ability to learn from examples.

(ii) BNNs have a high degree of parallelism.

(iii) BNNs require a mathematical model of the problem.

(iv) BNNs can acquire knowledge by "trial and error".

(v) BNNs use a sequential algorithm to solve problems.

- a) (i), (ii), (iii), (iv) and (v) b) (i), (iii) and (iv)
- c) (i), (ii) and (iii)

d) (i), (ii) and (iv)

2) A multi-layer feedforward network has 5 input units, a first hidden layer with 4 units, a second hidden layer with 3 units, and 2 output units. How many weights does this network have?

a) 18	b)	20
-------	----	----

c) 26 d) 38

3) Which of the following equations is the best description of **Hebbian learning**?

a) $\Delta W_k = \eta y_k X$

a)

- **b)** $\Delta W_k = \eta (X W_k)$
- c) $\Delta W_k = \eta (d_k y_k) X$

d)
$$\Delta W_i = \eta_i (X - W_i)$$
, where $\eta_i < \eta$ and $j \neq k$

Where X is the input vector, η is the learning rate, W_k is the weight vector, d_k is the target output, and y_k is the actual output for unit k.

4) Is the following statement true or false? "A perceptron is trained on the data shown below, which has two classes (the two classes are shown by the symbols '+' and 'o' respectively). After many epochs of training, the perceptron will converge and the decision line will reach a steady state."

5) How many hidden layers are there in an **autoassociative** Hopfield network?

a) None (0). b) One (1).

c) Two (2). d) unlimited

- 6) The maximum number of fundamental memories M_{max} (All perfectly retrieved) that can be stored in the n-neuron Hopfield network is limited by
 - a) $M_{max} = 0.15 n$ b) $M_{max} = \frac{n}{2 \ln n}$ c) $M_{max} = \frac{n}{4 \ln n}$ d) None of above

7) An input vector **x** and two prototype vectors \mathbf{p}_1 and \mathbf{p}_2 are given by

- $\mathbf{x} = [-1.40, 2.30, 0.20]_{m}^{T}$
- $\mathbf{p}_1 = [-1.00, 2.20, 0.10]_{m}^{T}$
- $\mathbf{p}_2 = [-4.00, \quad 7.00, \quad 0.60]^{\mathrm{T}}$

Which prototype is nearest to **x** in terms of squared Euclidean distance?

```
a) p1
```

b) p₂

8) Which of the following statements is **NOT** true for a self-organizing map (**SOFM**)?

a)	The size of the neighbourhood is decreased during training.
b	The units are arranged in a regular geometric pattern such as a square or ring.
C)	The weights of the winning unit k are adapted by $\Delta wk = \eta$ (x – wk), where x is the input vector.
ď	The weights of the neighbours j of the winning unit are adapted by $\Delta w j = \eta_j (x - w j)$, where $\eta_j > \eta$ and $j \neq k$.

- 9) What is the equation for probabilistic or?
 a) Probor (a,b) = a-b + ab
- b) Probor (a,b) = a+b ab
- c) Probor (a,b) = ab + ab d) Probor $(a,b) = a/b \times ab$

10) What is the input and output of step 2 of fuzzy logic - Apply Fuzzy Operator?

- a) The input is a single truth value and the output has two or more values.
- b) The input is a value greater than one and the output is a value less than the input.
- c) The input and output have both the same values.
- d) The input has two or more values and the output has a single truth value.

11)The result of **fuzzy operator** shown in the following figure is

12)What is the following sequence of steps taken in designing a fuzzy logic machine?a) Fuzzification->Rule evaluation->Defuzzification

- b) Rule evaluation->Fuzzification->Defuzzification
- c) Fuzzy Sets->Defuzzification->Rule evaluation
- d) Defuzzification->Rule evaluation->Fuzzification

Question 2 This question is attributed with 9 marks if answered properly; the answers are as following:

Solution

- Fuzzy logic system (FLS) can be defined as the nonlinear mapping of an input data set to a scalar output data. A FLS consists of four main parts:
 - Fuzzifier (Fuzzification).
 - Rules.
 - Inference engine.
 - Defuzzifier (Defuzzification).
- These components and the general architecture of a FLS are shown in Figure.

5) Convert the output data to non-fuzzy values (defuzzification).

Question 3 This question is attributed with 6 marks if answered properly; the answers are as following:

Solution				
a) (1.5 marks)				
Input to top neuron = $(0.35x0.1) + (0.9x0.8) = 0.755$. Output = 0.68.				
Input to bottom neuron = $(0.9 \times 0.6) + (0.35 \times 0.4) = 0.68$. Output = 0.6637.				
Input to final neuron = (0.3x0.68) + (0.9x0.6637) = 0.80133. Output = 0.69.				
b) (3 marks)				
Output error δ = (t-o) (1-o) o = (0.5-0.69) (1-0.69)0.69 = -0.0406.				
New weights for output layer:				
$w_1 + = w_1 + (\delta \times input) = 0.3 + (-0.0406 \times 0.68) = 0.272392.$				
$w_2 + = w_2 + (\delta \times input) = 0.9 + (-0.0406 \times 0.6637) = 0.87305.$				
Errors for hidden layers:				
$\delta_1 = \delta \times w_1 = -0.0406 \times 0.272392 \times (1-0) = -2.406 \times 10^{-3}$				
$\delta_2 = \delta \times w^2 = -0.0406 \times 0.87305 \times (1-0) \circ = -7.916 \times 10^{-3}$				
New hidden layer weights:				
w_3 +=0.1 + (-2.406 x 10-3 x 0.35) = 0.09916.				
w_4 + = 0.8 + (-2.406 x 10-3 x 0.9) = 0.7978.				
w_s + = 0.4 + (-7.916 x 10-3 x 0.35) = 0.3972.				
$w_6 + = 0.6 + (-7.916 \times 10.3 \times 0.9) = 0.5928.$				
c) (1.5 marks)				
Old error was -0.19. New error is -0.18205. Therefore error has reduced.				

Question 4 This question is attributed with 4 marks if answered properly; the answers are as following:

6	4 .		
20		Ъi	1

$A \cup B = \left\{ \frac{0.4}{a10} + \frac{1.0}{b52} + \frac{1.0}{b117} + \frac{0}{C} + \frac{0.7}{f111} + \frac{0}{KC130} \right\}$	$\frac{0}{25} + \frac{0}{C130} + \frac{0.6}{f4} + \frac{0.9}{f14} + \frac{0.8}{f15} + \frac{1.0}{f16}$
$A \cap B = \int \frac{0.4}{1.0} + \frac{1.0}{1.0} + \frac{0.4}{1.0} + \frac{0.4}{1.0}$	0 + 0 + 0.5 + 0.6 + 0.8 + 0.3
$ \left. \begin{array}{c} 1110 \\ +\frac{0.4}{\text{f111}} + \frac{0}{\text{KC130}} \end{array} \right\} $	C5 ' C130 ' f4 ' f14 ' f15 ' f16
$\bar{A} = \left\{ \frac{0.7}{f16} + \frac{0.5}{f4} + \frac{0.6}{a10} + \frac{0.4}{f14} + \frac{1}{10} \right\}$	$-\frac{0.7}{f15} + \frac{0.3}{f111} + \frac{0}{b117} + \frac{0}{b52} + \frac{1}{C5}$
$\bar{B} = \left\{ \frac{0.6}{b117} + \frac{0.6}{f111} + \frac{0.4}{f4} + \frac{0.2}{f15} + \right.$	$\frac{0.1}{f14} + \frac{0}{f16} + \frac{1}{C5} + \frac{1}{C130} + \frac{1}{KC130} \bigg\}$
Question 5 This question is attributed with 4 marks i	f answered properly; the answers are as following:
So	olution
clear all ; clc; close all; %Create training data as follows:	
x = 0:0.02:1; % x-values for the function	on
y = x + 0.3*sin(2*pi*x); % Exact funct	ion values for each x
p = x; % x-values used for training of	the network
t = y + 0.1*randn(size(y)); % Noisy ma	easurements of the function values for p
%Plot the data	
grid: xlabel('time (s)'): vlabel('output	'): title(' function approximation ')
xt = 0:0.01:1; % x-values to use for tes	ting
yt = xt + 0.3*sin(2*pi*xt); % Correct f	unction values for xt. (2 marks)
<pre>net = newff(minmax(p), [1,1], {'logsig</pre>	J', 'purelin'},'trainlm');
% Define learning parameters	
net.trainParam.show = 50; % The res	ult is shown at every 50th iteration.
net.trainParam.lr = 0.05; % Learning	rate used in some gradient schemes
net.trainParam.epocns = 1000; % Max	clerance: stopping griterion
net = train(net, p, t):	orerance, stopping criterion
z = sim(net, xt);	
% Maximum fitting error	
Maxfiterror = max (z- yt)	(2 marks)
Question 6 This question is attributed with 5 marks i	f answered properly; the answers are as following:
So	lution 1
a=newfis(' water ');	
a.andMethod = 'min'; a.orMe	hod = 'max';
a.implyiethod = min; $a.aggW$	$e_{110u} - max; a.ae_{122111e_{100}} = c_{111}; a_{111}, a_{111}$
a.input(1).mf(1).name='high':	a.input(1).mf(1).type='gaussmf':
a.input(1).mf(1).params=[1.5 -1];	a.input(1).mf(2).name='okay';
a.input(1).mf(2).type='gaussmf'; a.input	(1).mf(2).params=[1.5 0];
a.input(1).mf(3).name='low';	a.input(1).mf(3).type='gaussmf';
a.input(1).mf(3).params=[1.5 1]; a.outpu	t(1).name='valve'; (1 mark)
a.output(1).range=[0 1]; a.outpu	t(1).mt(1).name='closefast'
a.output(1). $mf(2)$ name='nochange':	a.output(1). $m(1)$.params-[0 0 0.4]; a output(1) mf(2) twpe='trimf': (1 marb)
a.output(1).mf(2).params=[0.1 0.5 0.9];	a.output(1).mf(3).name='openfast';

<pre>a.output(1).mf(3).type='trimf'; a.rule(1).antecedent=[2]; a.rule(1).weight=1; a.rule(2).antecedent=[3]; a.rule(2).weight=1; a.rule(3).antecedent=[1];</pre>	a.output(1).mf(3).params=[0.6 1 1]; a.rule(1).consequent=[2]; a.rule(1).connection=1; a.rule(2).consequent=[3]; a.rule(2).connection=1; a.rule(3).consequent=[1];		
a.rule(3).weight=1; %FIS Evaluation	a.rule	(3).connection=1;	
evalfis	(0.8 , a)	(2 marks)	
	Or		
So	lution 2		
a=newfis('Water'); a.andMethod = 'min': a.orMet	hod = 'max':		
a.impMethod = 'min'; a.aggMe	ethod = 'max';	a.defuzzMethod = 'centroid';	
a=addvar(a,'input', 'level',[-1 -1]);	,		
a=addmf(a,'input',1,' high ','gaussmf',[1.5 -1]);			
a=addmi(a, input, 1, okay', gaussmi', [1.5 0]); a=addmf(a, 'input', 1, 'low', 'gaussmf', [1.5 1]); (2.5 marks)		(2.5 marks)	
a=addvar(a, 'output', ' valve ',[0 1]);			
a=addmf(a,'output',1,' closefast ','trimf',[0 0 0.4]);			
a=addmf(a,'output',1,' nochange ','trimf',[0.1 0.5 0.9]);			
a=addmf(a,'output',1,' openfast ','trimf',[0.6 1 1]);			
ruleList=[
2211			
3311			
1111];			
a=addrule(a,ruleList);			
%FIS Evaluation			
evalfis(0.8, a)		(2.5 marks)	