

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper BSc CE

Logic Circuits (630211)

Final Exam

First semester

Date: 03/02/2019

Section 1

Weighting 40% of the module total

Lecturer:

Coordinator:

Internal Examiner:

Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Naser Halasa

Marking Scheme Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 6 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 10 marks if answered properly; the answers are the following: 1) Which of the following is **not a weighted** value positional numbering system:

-,	a) hexadecimal c) <mark>binary-coded decimal</mark>	b) d)	binary octal
2)	Convert 527₈ to binary. a) 0111001111 c) 111010101	b) d)	<mark>101010111</mark> 343
3)	The Gray code of the binary number 0101 is a) 1111 c) 0111	b) d)	1000 None of the abo v e
4)	Simplification of the Boolean expression <i>AB</i> + which of the following results? a) AB	ABC +	- ABCD + ABCDE + ABCDEF yields AB + CD + EF
	c) ABCDEF	d)	$\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D} + \mathbf{E} + \mathbf{F}$
5)	Applying DeMorgan's Law to $f = \overline{AB} + \overline{C}$,
	a) $f = \overline{A} + \overline{B} + \overline{C} + \overline{E} + D$ c) $f = \overline{A} \ \overline{B} \ \overline{C} + (E + \overline{D})$		$f = \overline{A} B C + E D$ $f = \overline{A} + \overline{B} + \overline{C} + \overline{E} D$
6)	From the truth table below, determine the standa	ard SOP	-
7)	A B 0 0 0 1 0 1 1 0 1 1	C + ABC C + ABC C + ABC C + ABC C + ABC C + ABC	x 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
•	c) $F = XOR(P,Q)$	d)	F = OR(P,Q) F = XNOR(P,Q)

8) The characteristic equation of **S-R** latch is

a)
$$Q(n+1) = S'R + Q(n)R$$

c) $Q(n+1) = SR + Q(n)R$

c)
$$Q(n+1) = SR + Q(n)R$$

 $\boldsymbol{Q}(\boldsymbol{n+1}) = (\boldsymbol{S} + \boldsymbol{Q}(\boldsymbol{n}))\boldsymbol{R}'$ b)

d) $\overline{Q(n+1)} = S'R + Q'(n)R$

Question 2 This question is attributed with 6 marks if answered properly; the answers are the following:

a) Prove the identity of the following Boolean equation, using algebraic manipulation:

 $\overline{AB} + \overline{BC} + AB + \overline{BC} = 1$ Solution $\overline{AB} + \overline{BC} + AB + \overline{BC} = 1$ $= (\overline{AB} + AB) + (\overline{BC} + \overline{BC})$ $= B(A + \overline{A}) + \overline{B}(C + \overline{C})$ $= B + \overline{B}$ = 1 (2 marks)

b) Draw 4-bit asynchronous binary counter using JK flip flops and its timing diagram. (4 marks)

<u>Question 3</u> This question is attributed with *4 marks* if answered properly; the answers are the following: Implement **full adder** circuit using **4:1 multiplexers**.

Question 4This question is attributed with 7 marks if answered properly; the answers are the following:a) Derive the Boolean equations for D and B_{out} .(3 marks)

Question 5 This question is attributed with 6 marks if answered properly; the answers are the following:

Solution

The flip flop input equations are

$$D_1 = xq_1 + xq_2$$
$$D_2 = xq'_1q'_2$$
$$z = xq_1$$

The output equations are

D flip flops $q^{\star} = D$. Thus

$$q_1^{\star} = xq_1 + xq_2$$
$$q_2^{\star} = xq_1'q_2'$$

State table

	(<i>i</i> *	Z		
q	x = 0	x = 1	x = 0	x = 1	
0 0	0 0	0 1	0	0	
0 1	0 0	1 0	0	0	
1 0	0 0	1 0	0	1	
1 1	0 0	1 0	0	1	

State diagram

Question 6 This question is attributed with 7 marks if answered properly; the answers are the following:

The **next state** table for this state diagram

(1.5 marks)

Input	Current State		Next	t State	Output
X	Q1	Q 0	Q1	Q 0	Y
0	0	0	1	1	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0

The **excitation equations** if **J-K flip flops** are used to implement this state diagram (use the Karnaugh map in your solution).

J-K flip flop transition table:

Q _{current}	Q _{next}	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

(2 marks)

Input	Current State		Next State		Output	flip flop inputs (excitation)			
х	Q1	Q 0	Q1	Q 0	Y	J1	K1	JO	K0
0	0	0	1	1	0	1	x	1	x
0	0	1	0	0	1	0	x	x	1
0	1	0	0	1	0	x	1	1	x
0	1	1	1	0	0	x	0	x	1
1	0	0	1	0	0	1	x	0	x
1	0	1	0	0	1	0	x	x	1
1	1	0	1	1	0	x	0	1	x
1	1	1	0	1	0	x	1	x	0

