Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE
Logic Circuits (630211)

First semester
Date: 03/02/2019
Section 1
Weighting 40% of the module total

Lecturer:
Dr. Qadri Hamarsheh
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Naser Halasa

The presented exam questions are organized to overcome course material through 6 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with $\mathbf{1 0}$ marks if answered properly; the answers are the following:

1) Which of the following is not a weighted value positional numbering system:
a) hexadecimal
b) binary
c) binary-coded decimal
d) octal
2) Convert $\mathbf{5 2 1}_{8}$ to binary.
a) 011100111
b) 101010111
c) 111010101
d) 343
3) The Gray code of the binary number 0101 is
a) 1111
b) 1000
c) 0111
d) None of the above
4) Simplification of the Boolean expression $A B+A B C+A B C D+A B C D E+A B C D E F$ yields which of the following results?
a) AB
b) $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}$
c) $A B C D E F$
d) $\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}+\mathbf{E}+\mathbf{F}$
5) Applying DeMorgan's Law to $f=\overline{\overline{\overline{A B}+\bar{C}}(E+\bar{D})}$ will result in:
a) $f=\bar{A}+\bar{B}+\bar{C}+\bar{E}+D$
b) $f=\bar{A} \bar{B} \bar{C}+E \bar{D}$
c) $\quad f=\bar{A} \bar{B} \bar{C}+(E+\bar{D})$
d) $f=\bar{A}+\bar{B}+\bar{C}+\bar{E} D$
6) From the truth table below, determine the standard $\mathbf{S O P}$ expression.

Inputs			
A	B	C	Output
0	0	0	X
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

a) $X=\overline{\mathrm{A}} \overline{\mathrm{B} C}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \mathrm{BC}$
b) $x=\bar{A} \bar{B} \bar{C}+A B C+A \bar{B} C$
c) $X=A B C+A B C+A B C$
d) $X=A \bar{B} C+\bar{A} B C+A B \bar{B}$
7) The logic function implemented by the circuit below is (ground implies a logic " 0 ")

a) $\quad \boldsymbol{F}=\operatorname{AND}(\boldsymbol{P}, \boldsymbol{Q})$
b) $\quad F=O R(P, Q)$
d) $\quad F=\operatorname{XNOR}(P, Q)$
8) The characteristic equation of $\mathbf{S}-\mathbf{R}$ latch is
a) $\quad Q(n+1)=S^{\prime} R+Q(n) R$
b) $Q(n+1)=(S+Q(n)) R^{\prime}$
c) $\quad Q(n+1)=S R+Q(n) R$
d) $\boldsymbol{Q}(n+1)=S^{\prime} R+Q^{\prime}(n) R$
9) The figure shown below is -------

a) A T flip flop
b) An S-R latch
c) A JK flip flop
d) A D flip flop
10) A ripple counter is a(n) \qquad device
a) asynchronous
b) Combinational
c) synchronous
d) None of them

Question 2 This question is attributed with 6 marks if answered properly; the answers are the following:
a) Prove the identity of the following Boolean equation, using algebraic manipulation:
(2 marks)
$\bar{A} B+\bar{B} \bar{C}+A B+\bar{B} C=1$

Solution

$$
\begin{aligned}
& \bar{A} B+\bar{B} \bar{C}+A B+\bar{B} C=1 \\
& =(\bar{A} B+A B)+(\bar{B} \bar{C}+\bar{B} C) \\
& =B(A+\bar{A})+\bar{B}(C+\bar{C}) \\
& =B+\bar{B} \\
& =1
\end{aligned}
$$

b) Draw 4-bit asynchronous binary counter using JK flip flops and its timing diagram. (4 marks) Solution

Question 3 This question is attributed with 4 marks if answered properly; the answers are the following: Implement full adder circuit using 4:1 multiplexers.

Solution								
x	y	Cin	S	Cout	s	Cout		
0	0	0			0	0	$\cdots: 4 \times 1$	
0	0	1	$1_{0}=z$	$\mathrm{I}_{0}=0$	1	0	$)^{2}{ }_{3}{ }^{\text {mux }}$	
0	1	0			1	0		
0	1	1	$\mathrm{I}_{1}={ }^{\prime}$	$\mathrm{I}_{1}=$	0	1	\square	
1	0	0			1	0	$x \square \cdot 0 \cdot 04 \times 1$	
1	0	1	$\mathrm{I}_{2}=z^{\prime}$	$\mathrm{I}_{2}=\mathrm{Z}$	0	1		- Cout
1	1	0	$\mathrm{I}_{3}=z$	$\mathrm{I}_{3}=1$	0	1	$\square^{1} \square^{3}$ s,	
1	1	1	$\mathrm{I}_{3} 2$		1	1		

Question 4 This question is attributed with 7 marks if answered properly; the answers are the following:
a) Derive the Boolean equations for D and $B_{\text {out }}$.
(3 marks)
Solution

		01	11	10	Bi^{P}	00	01	11	10
0	0	1	0	1	0	0	1	0	0
1	1	\bigcirc	1	0	1	1	1	1	\bigcirc
$D=\bar{P} \bar{Q} B_{i n}+P \bar{Q} \bar{B}_{i n}^{D}+\bar{P} Q \bar{B}_{i n}+P Q B_{i n}$					B	=	Q		2

b) Implement D and $B_{\text {out }}$ logic circuits.
(2 marks)
Solution

c) Design the 1-bit full subtractor using 3×8 decoder.

Question 5 This question is attributed with $\mathbf{6}$ marks if answered properly; the answers are the following:

The flip flop input equations are

$$
\begin{aligned}
& D_{1}=x q_{1}+x q_{2} \\
& D_{2}=x q_{1}^{\prime} q_{2}^{\prime} \\
& z=x q_{1}
\end{aligned}
$$

The output equations are
D flip flops $q^{\star}=D$. Thus

$$
\begin{aligned}
& q_{1}^{\star}=x q_{1}+x q_{2} \\
& q_{2}^{\star}=x q_{1}^{\prime} q_{2}^{\prime}
\end{aligned}
$$

State table

State diagram

Question 6 This question is attributed with 7 marks if answered properly; the answers are the following:

The next state table for this state diagram
(1.5 marks)

Input	Current State		Next State		Output
X	Q1	Q0	Q1	Q0	Y
0	0	0	1	1	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0

The excitation equations if J-K flip flops are used to implement this state diagram (use the Karnaugh map in your solution).
J-K flip flop transition table:
(2 marks)

$\mathbf{Q}_{\text {current }}$	$\mathbf{Q}_{\text {next }}$	J	K
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}
$\mathbf{0}$	$\mathbf{1}$	\mathbf{l}	\mathbf{x}
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	$\mathbf{1}$
$\mathbf{1}$	\mathbf{l}	\mathbf{x}	$\mathbf{0}$

Input	Current State		Next State			Output		
\mathbf{X}	$\mathbf{Q 1}$	$\mathbf{Q 0}$	$\mathbf{Q 1}$					
flip flop inputs								
(excitation)								

Karnaugh map

(2 marks)

