Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE
Logic Circuits (630211)

Final Exam
Second semester
Date: 02/06/2019
Section 1
Weighting 40% of the module total

Lecturer:
Dr. Qadri Hamarsheh
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Naser Halasa

The presented exam questions are organized to overcome course material through 6 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with $\mathbf{1 0}$ marks if answered properly; the answers are the following:

1) The binary number $\mathbf{1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 ~ c a n ~ b e ~ w r i t t e n ~ i n ~ h e x a d e c i m a l ~ a s ~}$ \qquad _.
a) $\mathrm{DD}^{2} 6 \mathrm{~A}_{16}$
b) $\quad 1 \mathrm{D} 63 \mathrm{~A}_{16}$
c) $\quad 1 \mathrm{D} 631_{16}$
d) $\quad \mathbf{1 D}^{1} 3 \mathrm{~A}_{16}$
2) Refer to the following figure. If $\mathbf{A}=\mathbf{0}$ and $\mathbf{B}=\mathbf{1}$, what will be the logic states at \mathbf{X}, \mathbf{Y} and \mathbf{Z} ?

a) $\mathrm{X}=1, \mathrm{Y}=1, \mathrm{Z}=0$
b) $\mathrm{X}=1, \mathrm{Y}=0, \mathrm{Z}=0$
c) $\mathrm{X}=0, \mathrm{Y}=0, \mathrm{Z}=1$
d) $\mathbf{X}=\mathbf{0}, \mathbf{Y}=\mathbf{1}, \mathbf{Z}=\mathbf{0}$
3) The simplification of the Boolean expression $(\overline{\bar{A} B \bar{C}})+(\overline{A \bar{B} C})$ is
a) 0
b)
c) $\quad \mathrm{A}$
d) $\mathbf{B C}$
4) The equivalent canonical (standard) form for the following logical expression

$$
\mathbf{F}=\mathbf{A B}+\mathbf{C} \text { is }
$$

a) $\quad \mathrm{F}=\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}$
b) $\quad \mathbf{F}=\mathbf{A B C}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}+\mathbf{A B} \overline{\mathbf{C}}$
c) $\quad \mathrm{F}=\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}$
d) None of the above
5) The function $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum(\mathbf{1}, \mathbf{2}, \mathbf{3}, 5,7)$ is equivalent to
a) $\bar{C}+\bar{A} B$
b) $C+A B$
c) $C+\bar{A} B$
d) $C+A \bar{B}$
6) Which of the following circuits come under the class of combinational logic circuits?

1. Full adder
2. Full subtracter
3. Half adder
4. J-K flip

5. Counter

Select the correct answer from the codes given below:
a) 1 only
b) 3 and 4
c) 4 and 5
d) 1,2 , and 3
7) The Boolean function realized by the logic circuit shown is

a) $\quad F=\Sigma m(0,1,3,5,9,10.14)$
b) $\quad \mathbf{F}=\Sigma \mathbf{m}(2,3,5,7,8,12.13)$
c) $\quad F=\Sigma m(1,2,4,5,11,14.15)$
d) $\quad F=\Sigma \mathrm{m}(2,3,5,7,8,9.12)$
8) The circuit shown here is most likely a \qquad

a) Adder
c) Demultiplexer
b) Multiplexer
d) Parity generator
9) If the input combination $\mathbf{A}=\mathbf{0}, \mathbf{B}=\mathbf{1}$ is applied to this circuit, the (steady state) output will be:

a) $\mathbf{X}=0, \mathbf{Y}=0$
b) $\mathbf{X}=0, Y=1$
c) $\mathbf{X}=1, \mathbf{Y}=\mathbf{0}$
d) $\mathbf{X}=1, Y=1$
10) The characteristic equation for the \mathbf{T}-Flip Flop is:
a) $\quad Q(t+1)=T \cdot \bar{Q}+\bar{T} \cdot Q$
b) $\quad Q(t+1)=\bar{T} \cdot \bar{Q}+T . Q$

Question 2 This question is attributed with 6 marks if answered properly; the answers are the following:
a)

Solution

Three weighted Binary codes codes are:

1. BCD (8421)
2. 6311
3. 2421
4. 642-3
5. 84-2-1
b)
Solution

$$
\begin{aligned}
\mathrm{D} & =(\overline{\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{C}}})(\mathrm{A}+\mathrm{C})=(\overline{\overline{\mathrm{A}} \mathrm{~B}} \mathrm{C})(\mathrm{A}+\mathrm{C})=[(\mathrm{A}+\overline{\mathrm{B}}) \mathrm{C}](\mathrm{A}+\mathrm{C}) \\
& =(\mathrm{A}+\overline{\mathrm{B}})(\mathrm{AC}+\mathrm{CC})=(\mathrm{A}+\overline{\mathrm{B}})(\mathrm{AC}+\mathrm{C})=\mathrm{AAC}+\mathrm{AC}+\mathrm{A} \overline{\mathrm{~B} C}+\overline{\mathrm{B}} \mathrm{C} \\
& =\mathrm{AC}+\mathrm{AC}+\overline{\mathrm{B} C}(\mathrm{~A}+1)=\mathrm{AC}+\overline{\mathrm{B}} \mathrm{C}(1)=\mathrm{AC}+\overline{\mathrm{B} C} \\
& =(\mathrm{A}+\overline{\mathrm{B}}) \mathrm{C}
\end{aligned}
$$

c)

Solution
$D=A(B+\bar{B})+(A+\bar{A}) \bar{B} C=A B+A \bar{B}+A \bar{B} C+\bar{A} \bar{B} C$

$$
\begin{aligned}
\mathrm{D} & =\mathrm{AB}(\mathrm{C}+\overline{\mathrm{C}})+\mathrm{A} \overline{\mathrm{~B}}(\mathrm{C}+\overline{\mathrm{C}})+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C} \\
& =\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{~B} C} \\
\mathrm{D} & =\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{~B} C}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC} \\
& =\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}+\mathrm{m}_{7}=\Sigma(1,4,5,6,7)
\end{aligned}
$$

Question 3 This question is attributed with 7 marks if answered properly; the answers are the following:

Inputs				Outputs	
X	Y	$C_{\text {in }}$	S	$C_{\text {out }}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
Truth table for the full adder					

$$
C_{\text {out }}=C_{\text {in }} \cdot(X \oplus Y)+X Y
$$

Solution

$$
\left\{\begin{array}{l}
S=C_{\text {in }} \oplus(X \oplus Y) \\
C_{\text {out }}=C_{\text {in }} \cdot(X \oplus Y)+X Y
\end{array}\right\}
$$

Proof:
The sum:

$$
\begin{aligned}
\mathbf{S} & =\overline{\mathbf{X}} \overline{\mathbf{Y}} \mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{X}} \overline{\mathbf{C}_{\mathbf{m}}}+\mathbf{X} \overline{\mathbf{Y}} \overline{\mathbf{C}_{\mathbf{m}}}+\mathbf{X Y \mathbf { C } _ { \mathbf { i n } }} \\
& =\overline{\mathbf{C}_{\mathbf{m}}}(\overline{\mathbf{X} \mathbf{Y}}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \overline{\mathbf{Y}}+\mathbf{X Y}) \\
& \left.=\overline{\mathbf{C}_{\mathbf{m}}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{C}_{\mathbf{i n}} \overline{\mathbf{X} \mathbf{Y}}+\mathbf{X} \overline{\mathbf{Y}}\right) \\
S & =C_{i n} \oplus(X \oplus Y)
\end{aligned}
$$

The carry output:

$$
\begin{aligned}
& C_{\text {out }}=\bar{X} Y_{C_{i n}}+X \bar{Y} C_{i n}+X Y C_{i n}+X Y \overline{C_{i n}} \\
& =\mathbf{C}_{\mathbf{i n}}(\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X} \overline{\mathbf{Y}})+\mathbf{X Y}\left(\mathbf{C}_{\mathbf{i n}}+\overline{\mathbf{C}_{\mathbf{n}}}\right)
\end{aligned}
$$

Implementation of Full Adder with two Half Adders and an OR gate
b)

CHARACTERISTIC EQUATION	EXCITATION TABLE			
$Q_{\text {(next }}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}$$\mathrm{SR}=0$	Q	$Q_{\text {(next) }}$	S	R
	0	0	0	X
	0	1	1	0
	1	0	0	1
	1	1	X	0
$Q_{\text {(next }}=\mathrm{JQ}^{\prime}+\mathrm{K}^{\prime} Q^{\prime}$	Q	Q (next)	J	K
	0	0	0	X
	0	1	1	X
	1	0	X	1
	1	1	X	0

Question 4 This question is attributed with 7 marks if answered properly; the answers are the following:

Solution

$\mathbf{F} 1=\overline{(\mathbf{X}+\mathbf{Z})}+\mathbf{X Y Z}=\mathbf{X}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X Y Z}=\mathbf{X}^{\prime} \mathbf{Z}^{\prime}\left(\mathbf{Y}+\mathbf{Y}^{\prime}\right)+\mathbf{X Y Z}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z} \mathbf{Z}^{\prime}+\mathbf{X Y Z}$
$\mathbf{F} 2=\overline{(\mathbf{X}+\mathbf{Z})}+\mathbf{X}^{\prime} \mathbf{Y Z}=\mathbf{X}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z}=\mathbf{X}^{\prime} \mathbf{Z}^{\prime}\left(\mathbf{Y}+\mathbf{Y}^{\prime}\right)+\mathbf{X}^{\prime} \mathbf{Y Z}=\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z}$

$$
=\mathrm{m} 5+\mathrm{m} 0+\mathrm{m} 2
$$

b)
(2 marks)

c)
(2 marks)

Question 5 This question is attributed with 5 marks if answered properly; the answers are the following:

Question 6 This question is attributed with 5 marks if answered properly; the answers are the following:

Solution

Present State		Input	Next State		Flip-Flop Inputs			
A	B		A	B	$\mathrm{J}_{\text {A }}$	$\mathrm{K}_{\text {A }}$	J_{B}	$\mathrm{K}_{\text {B }}$
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Q(t)	Q(t (t)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
	(2 marks)		

(2 marks)

(l mark)

