Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE
Logic Circuits (630211)

Final Exam
First semester
Date: 28/01/2020
Section 1
Weighting 40% of the module total

Lecturer:
Dr. Qadri Hamarsheh
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Eng. Anis Nazer

The presented exam questions are organized to overcome course material through 6 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with $\mathbf{1 0}$ marks if answered properly; the answers are the following:
Identify the choice that best completes the statement or answers the question.

1) The binary number 101110101111010 can be written in octal as \qquad .
a) 51562_{8}
b) $\quad 56577_{8}$
c) 56572_{8}
d) $\mathbf{6 5 6 2 7}_{8}$
2) The excess- $\mathbf{3}$ code of decimal number $\mathbf{2 6}$ is:
a) 01001101
b) $\mathbf{0 1 0 0 1 0 0 1}$
c) $\mathbf{1 0 0 0 1 0 0 1}$
d) 01011001
3) In the circuit shown below, which logic function does this circuit generate?

a) $O R$
b) AND
c) NOR
d) NAND
4) The dual of the Boolean function $x+y z$ is:
a) $\bar{x}(\bar{y}+\bar{z})$
b) $x(y+z)$
c) $x+y z$
d) $\bar{x}+\bar{y} \bar{z}$
5) Applying DeMMorgan's theorem to the expression $\overline{\overline{(\boldsymbol{X}+\boldsymbol{Y})}+\bar{Z}}$, we get
a) $(X+Y) Z$
b) $\quad(\bar{X}+\bar{Y}) \bar{Z}$
c) $(\bar{X}+\bar{Y}) Z$
d) $(X+Y) \bar{Z}$
6) The K-map for a Boolean function is shown in the figure. The number of essential prime implicants for this function is

$C D^{A B}$	OO	01	11	10
OO	1	1	0	1
01	0	0	0	1
11	1	0	0	0
10	1	0	0	1

a) 4
b) 5
c) 6
d) 8
7) Any combinational circuit can be built using

1. NAND gates.
2. EX-OR gates.
3. NOR gates.
4. Multiplexers.

Which of these are correct?
a) 1, 2 and 3
b) 1, 3 and 4
c) 2,3 and 4
d) 1,2 and 4
8) Refer to the following figure, If $\mathbf{S}_{\mathbf{1}}=\mathbf{1}$ and $\mathbf{S}_{2}=\mathbf{0}$ what will be the logic state at the output \mathbf{X} ?

a) $X=A$
b) $X=B$
c) $\quad X=C$
d) $\quad X=D$
9) PRESET and CLEAR inputs are normally synchronous.
a) True
b) False
10) When designing the circuit with the state table shown below using JK flip flops, then $\mathbf{J}_{\mathbf{A}}=\ldots, \mathbf{K}_{\mathbf{A}}=\ldots$.

Present State	Input	Next State	JA	KA
	X	A B		
00	0	00		
00	1	01		
01	0	10		
01	1	01		
10	0	10		
10	1	11		
11	0	11		
11	1	00		

a) $\mathrm{J}_{\mathrm{A}}=\mathbf{B}^{\prime} \cdot \mathbf{x}^{\prime}, \mathbf{K}_{\mathrm{A}}=\mathbf{A}^{\prime}$
b) $\mathrm{J}_{\mathrm{A}}=\mathbf{B} \cdot \mathbf{x}, \mathrm{K}_{\mathrm{A}}=\mathbf{A}$
c) $\mathbf{J}_{A}=\mathbf{B} \mathbf{X}, \mathbf{K}_{A}=\mathbf{A}^{\prime}$
d) $\mathrm{J}_{\bar{A}}=\mathbf{B} \cdot \mathbf{x}^{\prime}, \mathbf{K}_{\bar{A}}=\mathbf{B} \cdot \mathbf{x}$

Question 2 This question is attributed with $\mathbf{6}$ marks if answered properly; the answers are the following:
a)
(2 marks)

Solution

$$
\begin{aligned}
& =(a \cdot b \cdot(c+\bar{b}+\bar{d})+\bar{a}+\bar{b}) \cdot c \cdot d \\
& \text { (De Morgan) } \\
& =(a \cdot b \cdot c+a \cdot b \cdot b+a \cdot b \cdot d+\bar{a}+\boldsymbol{b}) \cdot c \cdot d \quad \text { (distribute) } \\
& =(a \cdot b \cdot c+a \cdot b \cdot \bar{d}+\bar{a}+\bar{b}) \cdot c \cdot d \quad(a \cdot b \cdot \bar{b}=0) \\
& =a . b . c . d+a . b . d . c . d+a . c . d+b . c . d \quad \text { (distribute) } \\
& =\text { a.b.c.d + a.c.d + b.c.d } \quad \text { (a.b.d.c.d }=0 \text {) } \\
& =(a \cdot b+\bar{a}+\bar{b}) \cdot c \cdot d \text { (distribute) } \\
& =(a \cdot b+\overline{a \cdot b}) \cdot c \cdot d \text { (DeMorgan) } \\
& =c \cdot d \quad(a \cdot b+a \cdot b=1)
\end{aligned}
$$

b)
(4 marks)

Solution		
Function	Minterm list	Maxterm list
	F	$\sum X Y Z(3 ; 5 ; 6 ; 7)$
$\prod X Y Z(0 ; 1 ; 2 ; 4)$		
	G	$\sum X Y Z(1 ; 2 ; 4 ; 7)$
$\prod X Y Z(0 ; 3 ; 5 ; 6)$		

Question 3 This question is attributed with 6 marks if answered properly; the answers are the following:
Solution

$B^{B_{3} B_{2}} 00$		01	11	10
00	m0	m4	m12	m8
	0	0	1	1
01	m1	m5	m13	m9
	0	0	1	1
11	m3	m7	m15	m11
	0	0	1	1
10	m2	m6	m14	m10
	0	0	1	1

$G_{3}=B_{3}$

logic circuit using XOR circuits

Question 4 This question is attributed with 7 marks if answered properly; the answers are the following:

b)
(2 marks)

c)
(2.5 marks)

Question 5 This question is attributed with 5 marks if answered properly; the answers are the following:

Solution

Question 6 This question is attributed with 6 marks if answered properly; the answers are the following:
Solution

Quick table:						Full table:					
Present-state			Next-state			Present-state			Next-state		
Q_{2}	Q_{1}	Q_{0}	Q_{2+}	Q_{1+}	Q_{0+}	Q_{2}	Q_{1}	Qo	Q_{2+}	Q_{1+}	Qo+
0	0	1	0	1	1	0	0	0	x	x	x
0	1	1	0	1	0						
0	1	0	1	1	0	0	1	1	O	1	O
1	1	0	1	1	1	1	O	O	x	X	x
1	1	1	1	0	1	1	0	1	0	0	1
1	0	1	0	0	1	1	1	O	1	1	1
1	0	1	0	0	1	1	1	1	1	O	1

Present-state			Next-state			Flip-flop input		
Q_{2}	Q_{1}	Q_{0}	Q_{2+}	Q_{1+}	Q_{0+}	T_{2}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{0}$
0	0	1	0	1	1	0	1	0
0	1	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0	0
1	1	0	1	1	1	0	0	1
1	1	1	1	0	1	0	1	0
1	0	1	0	0	1	1	0	0

T_{2}												
$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Qo}_{0}$	00	01	11	10	00	01	11	10	00	01	11	10
0	x	0	0	1	x	1	0	0	x	0	1	0
1	x	1	0	0	x	0	1	0	x	0	0	1

$\mathrm{T}_{2}=\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}^{\prime}{ }^{\prime}+\mathrm{Q}_{2} \mathrm{Q}_{1}{ }^{\prime} \quad \mathrm{T}_{1}=\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}_{1}{ }^{\prime}+\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$
$\mathrm{T}_{\mathrm{o}}=\mathrm{Q}_{2} \mathrm{Qo}^{\prime}{ }^{\prime}+\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}_{1} \mathrm{Q}_{0}$

