Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

Final Exam First semester Date: 28/01/2020
Section 1
Weighting 40% of the module total

Lecturer: Dr. Qadri Hamarsheh
Coordinator: Dr. Qadri Hamarsheh
Internal Examiner: Eng. Anis Nazer
The presented exam questions are organized to overcome course material through 6 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 10 marks if answered properly; the answers are the following: **Identify the choice that best completes the statement or answers the question.**

1) The **binary** number 101110101111010 can be written in **octal** as ________.
 a) 51562₈ b) 56577₈ c) 56572₈ d) 65627₈

2) The **excess-3** code of decimal number 26 is:
 a) 01001101 b) 01001001 c) 10001001 d) 01011001

3) In the circuit shown below, which logic function does this circuit generate?
 a) OR b) AND c) NOR d) NAND

4) The **dual** of the Boolean function \(x + yz \) is:
 a) \(x(y + z) \) b) \(x(y + z) \) c) \(x + yz \) d) \(x + yz \)

5) Applying **DeMorgan's theorem** to the expression \((X + Y) + \overline{Z}\), we get ________
 a) \((\overline{X} + \overline{Y})\overline{Z} \) b) \((\overline{X} + \overline{Y})\overline{Z} \) c) \((\overline{X} + \overline{Y})\overline{Z} \) d) \((\overline{X} + \overline{Y})\overline{Z} \)

6) The K-map for a Boolean function is shown in the figure. The number of **essential prime implicants** for this function is
 a) 4 b) 5 c) 6 d) 8

7) **Any** combinational circuit can be built using
 1. NAND gates. 2. NOR gates. 3. EX-OR gates. 4. Multiplexers.
 Which of these are correct?
 a) 1, 2 and 3 b) 1, 3 and 4 c) 2, 3 and 4 d) 1, 2 and 4

8) Refer to the following figure, If \(S_1 = 1 \) and \(S_2 = 0 \) what will be the logic state at the output \(X \)?
 a) \(X = A \) b) \(X = B \) c) \(X = C \) d) \(X = D \)

9) **PRESET** and **CLEAR** inputs are normally **synchronous**.
 a) True b) False

10) When designing the circuit with the state table shown below using \(J \& K \) flip flops, then \(J_A = \ldots \) \(K_A = \ldots \)
Question 2 This question is attributed with 6 marks if answered properly; the answers are the following:

a) \[J_A = B'.x', K_A = A' \]

b) \[J_A = B.x, K_A = A \]

c) \[J_A = B.X, K_A = A' \]

d) \[J_A = B.x', K_A = B.x \]

Question 3 This question is attributed with 6 marks if answered properly; the answers are the following:

Solution

<table>
<thead>
<tr>
<th>Function</th>
<th>Minterm list</th>
<th>Maxterm list</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(\sum XYZ (3; 5; 6; 7))</td>
<td>(\sum XYZ (0; 1; 2; 4))</td>
</tr>
<tr>
<td>(G)</td>
<td>(\sum XYZ (1; 2; 4; 7))</td>
<td>(\sum XYZ (0; 3; 5; 6))</td>
</tr>
</tbody>
</table>

Question 4 This question is attributed with 7 marks if answered properly; the answers are the following:
a) **Solution**

Truth table of half adder is as shown:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

b) **Solution**

CLK

S

R

Q

\(\overline{Q} \)

time

(c) **Solution**

HIGH

FF0

\(C \)

FF1

\(C \)

FF2

\(C \)

CLK

\(Q_0 \) (LSB)

\(0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \)

\(Q_1 \)

\(0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \)

\(Q_2 \) (MSB)

\(0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \)
Question 5 This question is attributed with 5 marks if answered properly; the answers are the following:

Solution

- Equations
 - \(A(t+1) = BC \)
 - \(B(t+1) = B'C + BC' \)
 - \(C(t+1) = A'C \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(A'B'C')</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 1 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 0 0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 1 0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 1 0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 0 0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Question 6 This question is attributed with 6 marks if answered properly; the answers are the following:

Solution

- Quick table:
 - **Present-state**
 - \(Q_2 \) | \(Q_1 \) | \(Q_0 \)
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 1 0
 - 1 1 1
 - 1 0 1

 - **Next-state**
 - \(Q_{2^-} \) | \(Q_{1^-} \) | \(Q_{0^-} \)
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 1 0
 - 1 1 1
 - 1 0 0

- Full table:
 - **Present-state**
 - \(Q_2 \) | \(Q_1 \) | \(Q_0 \)
 - 0 0 0
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 0 0
 - 1 0 1
 - 1 1 0
 - 1 1 1

 - **Next-state**
 - \(Q_{2^0} \) | \(Q_{1^0} \) | \(Q_{0^0} \)
 - x 0 0
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 0 0
 - 1 0 1
 - 1 1 0
 - 1 1 1

- **Flip-flop input**
 - **Present-state**
 - \(Q_2 \) | \(Q_1 \) | \(Q_0 \)
 - 0 0 0
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 0 0
 - 1 0 1
 - 1 1 0
 - 1 1 1

 - **Next-state**
 - \(T_2 \) | \(T_1 \) | \(T_0 \)
 - 0 0 0
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 0 0
 - 1 0 1
 - 1 1 0
 - 1 1 1

 - **Flip-flop input**
 - \(T_2 \) | \(T_1 \) | \(T_0 \)
 - x 0 0
 - 0 0 1
 - 0 1 0
 - 0 1 1
 - 1 0 0
 - 1 0 1
 - 1 1 0
 - 1 1 1

\[T_2 = Q_2'Q_0 + Q_2Q_1' \]
\[T_1 = Q_2'Q_1 + Q_2Q_1Q_0 \]
\[T_0 = Q_2Q_0' + Q_2Q_1Q_0' \]