

Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper

Department of Communication & Electronics Engineering

Probability and Random Variables

(650364)

Final Exam

First semester

Date: 21/01/2020

Section 1

Weighting 40% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Omar Daoud

Marking Scheme **Probability and Random Variables (650364)**

The presented exam questions are organized to overcome course material through 6 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

Ouestion 1: This question is attributed with 10 marks if answered properly, the answer is the following:

1) A box of 8 marbles has 4 red, 2 green, and 2 blue marbles. If you select one marble, what is the probability that it is a **red or blue** marble?

	a)	0.60		b)	0.75
	c)	6.00		d)	0.80
2)	Compute $\begin{pmatrix} 9\\ 4 \end{pmatrix}$				
	a)	84		b)	126
	c)	3024		d)	15,120
2)	About the inder	and ant av	ants T and D it is language	that	D(A D)

3) About the independent events **A** and **B** it is known that P(A|B) = 0.2 and P(B|A) = 0.5. Compute the probability $P(A \cup B)$

a)	0.5	b)	0.7
C)	0.1	d)	0.6

4) In a sample of 10 telephones, 4 are defective. If 3 are selected at random and tested, what is the probability that all will be nondefective?

a)	1/30	b)	8/125	
C)	1/6	d)	27/125	

5) The corresponding z value (standard normal value – Z score) for a value of 9 if the mean of a variable is **12** and the standard deviation is **4**.

a)	-0.75	b)	0.75
C)	0.5	d)	-0.5

6) Which of the following is **NOT** required of a **binomial distribution**

a)	Each trial has exactly two outcomes.		
b)	Chere is a fixed number of trials.		
C)	The probability of success remains fixed for all trials.		
d)	There are more than 30 trials.		

7) Formula of variance of uniform distribution is as

a)
$$(b - a)^2 / 6$$

c) $(b - a)^3 / 8$

C)

b)	(b	+	$(a)^2$	1	12
d)	(b	+	$(a)^2$	/	2

8) The number of traffic accidents that occur on a particular stretch of road during a month follows a Poisson distribution with a mean of 7.9. Find the probability of observing exactly five accidents on this stretch of road next month.

a)	0.095067	b)	1.727754
C)	18.672798	d)	1.027438

18.672798 d) 1.027438

9) Consider the given discrete probability distribution. Find the probability that x equals 5.

		x	2	5	6	9
		$\overline{P(x)}$	0.09	?	0.23	0.21
a) c)	0.53				b) 2.65 d) 2.35	5
C)	0.47				d) 2.35	5

10) If **X** is a discrete random variable and f(x) is the probability function of **X**, then the expected value of this random variable is equal to:

a)	$\sum f(x)$	b)	$\sum [x + f(x)]$
c)	$\sum f(x) + x$	d)	$\sum x f(x)$

Question 3: This question is attributed with 5 marks if answered properly, the answer is the following: Solution

$$\mathbf{f}_{Y}(y) = \begin{cases} \frac{1}{2} & y = 2\\ \frac{1}{4} & y = 4\\ \frac{1}{4} & y = 5\\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{f}_{Y}(y) = \begin{cases} P(Y = 2|X = 1) = \frac{P(X = 1, Y = 2)}{P(X = 1)}\\ = \frac{P_{XY}(1, 2)}{P_{X}(1)}\\ = \frac{1}{12}\\ \frac{1}{12} = \frac{1}{2}. \end{cases}$$

$$\mathbf{f}_{Y}(x) = 1 = \frac{1}{12}$$

Question 4: This question is attributed with 8 marks if answered properly, the answer is the following: a) (5 marks)

Solution
i.

$$E(X) = \int_{-\infty}^{\infty} xf(x) dx = \int_{0}^{2} x\left(\frac{1}{2}x\right) dx = \int_{0}^{2} \frac{x^{2}}{2} dx = \frac{x^{3}}{6}\Big|_{0}^{2} = \frac{4}{3}$$
ii.

$$E(3X^{2} - 2X) = \int_{-\infty}^{\infty} (3x^{2} - 2x)f(x) dx = \int_{0}^{2} (3x^{2} - 2x)\left(\frac{1}{2}x\right) dx = \frac{10}{3}$$
iii.

$$\sigma^{2} = E\Big[\left(X - \frac{4}{3}\right)^{2}\Big] = \int_{-\infty}^{\infty} \left(x - \frac{4}{3}\right)^{2}f(x) dx = \int_{0}^{2} \left(x - \frac{4}{3}\right)^{2}\left(\frac{1}{2}x\right) dx = \frac{2}{9}$$

$$\overline{\sigma} = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}$$
b)
(3 marks)

$$\int\int\int f_{xy}(x, y) dx dy = \int_{0}^{1} \int_{0}^{y} k dx dy = \int_{0}^{1} ky dy = \frac{k}{2} = 1 \Rightarrow k = 2$$

$$f_x(x) = \int f_{xy}(x, y) \, dy = \int_x^1 k \, dy = k(1 - x) \qquad 0 < x < 1$$

$$f_{y}(y) = \int f_{xy}(x, y) \, dx = \int_{0}^{y} k \, dx = ky \qquad 0 < y < 1$$

$$f_{x+y}(x+y) = \frac{f_{xy}(x, y)}{f_{y}(y)} = \frac{1}{y} \qquad 0 < x < y < 1$$

$$f_{y+x}(y+x) = \frac{f_{xy}(x, y)}{f_{x}(x)} = \frac{1}{1-x} \qquad 0 < x < y < 1$$

Question 5: This question is attributed with 6 marks if answered properly, the answer is the following:

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y) dx dy = \int_{x=0}^{4} \int_{y=1}^{5} x\left(\frac{xy}{96}\right) dx dy = \frac{8}{3}$$

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy = \int_{x=0}^{4} \int_{y=1}^{5} y\left(\frac{xy}{96}\right) dx dy = \frac{31}{9}$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy)f(x, y) dx dy = \int_{x=0}^{4} \int_{y=1}^{5} (xy)\left(\frac{xy}{96}\right) dx dy = \frac{248}{27}$$

$$E(2X + 3Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (2x + 3y)f(x, y) dx dy = \int_{x=0}^{4} \int_{y=1}^{5} (2x + 3y)\left(\frac{xy}{96}\right) dx dy = \frac{47}{3}$$

Solution

Question 6: This question is attributed with 6 marks if answered properly, the answer is the following: a) (2 marks)

Solution

Autocorrelation Function Properties:

1. $\left| R_{xx}(\tau) \right| \le R_{xx}(0)$ 2. $\left| R_{xx}(-\tau) \right| = R_{xx}(0)$

$$2. \quad R_{xx}(-\tau) = R_{xx}(\tau)$$

- 3. $R_{xx}(0) = E[X^2(t)]$
- 4. If $E[X(t)] = \overline{X} \neq 0$ and X(t) is ergodic with no periodic components, then $\lim_{|\tau| \to \infty} R_{xx}(\tau) = \overline{X}^2$
- 5. If X(t) has a periodic component, then $R_{xx}(\tau)$ will have a periodic component with the same period.
- 6. If X(t) is ergodic, zero mean, and has no periodic components, then $\lim_{|\tau| \to \infty} R_{xx}(\tau) = 0$
- 7. $R_{xx}(\tau)$ cannot have an arbitrary shape.

(4 marks)

Solution

A random process is called wide-sense stationary (WSS) if the two following conditions are true

$$E[X(t)] = \overline{X} = \text{constant}$$
$$R_{XY}(t, t + \tau) = E[X(t)X(t + \tau)] = R_{XY}(\tau)$$

