Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of Communication \& Electronics Engineering

Probability and Random Variables

(650364)

Final Exam

First semester
Date: 21/01/2020
Section 1
Weighting 40% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Omar Daoud

Marking Scheme
 Probability and Random Variables (650364)

The presented exam questions are organized to overcome course material through 6 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1: This question is attributed with 10 marks if answered properly, the answer is the following:

1) A box of $\mathbf{8}$ marbles has $\mathbf{4}$ red, $\mathbf{2}$ green, and $\mathbf{2}$ blue marbles. If you select one marble, what is the probability that it is a red or blue marble?
a) $\mathbf{0 . 6 0}$
b) 0.75
c) $\quad 6.00$
d) 0.80
2) Compute $\binom{\mathbf{9}}{\mathbf{4}}$
a) 84
b) 126
c) $\mathbf{3 0 2 4}$
d) 15,120
3) About the independent events \boldsymbol{A} and \mathbf{B} it is known that $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\mathbf{0 . 2}$ and $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})=\mathbf{0 . 5}$. Compute the probability $\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B})$
a) 0.5
b) 0.7
c) 0.1
d) 0.6
4) In a sample of $\mathbf{1 0}$ telephones, $\mathbf{4}$ are defective. If $\mathbf{3}$ are selected at random and tested, what is the probability that all will be nondefective?
a) $1 / 30$
b) $8 / 125$
c) $1 / 6$
d) $27 / 125$
5) The corresponding \mathbf{z} value (standard normal value - \mathbf{Z} score) for a value of $\mathbf{9}$ if the mean of a variable is $\mathbf{1 2}$ and the standard deviation is $\mathbf{4}$.
a)
-0.75
b) 0.75
c)
0.5
d) -0.5
6) Which of the following is NOT required of a binomial distribution
a) Each trial has exactly two outcomes.
b) There is a fixed number of trials.
c) The probability of success remains fixed for all trials.
d) There are more than 30 trials.
7) Formula of variance of uniform distribution is as
a) $\quad(b-a)^{2} / 6$
b) $(b+a)^{2} / 12$
c) $\quad(b-a)^{3} / 8$
d) $(b+a)^{2} / 2$
8) The number of traffic accidents that occur on a particular stretch of road during a month follows a Poisson distribution with a mean of 7.9. Find the probability of observing exactly five accidents on this stretch of road next month.
a) 0.095067
b) $\mathbf{1 . 7 2 7 7 5 4}$
c) $\mathbf{1 8 . 6 7 2 7 9 8}$
d) $\mathbf{1 . 0 2 7 4 3 8}$
9) Consider the given discrete probability distribution. Find the probability that x equals 5 .

x	2	5	6	9
$P(x)$	0.09	$?$	0.23	0.21

a) 0.53
b) 2.65
c) $\quad 0.47$
d) 2.35
10) If \mathbf{X} is a discrete random variable and $\mathbf{f}(\mathbf{x})$ is the probability function of \mathbf{X}, then the expected value of this random variable is equal to:
a) $\quad \sum f(x)$
b) $\quad \sum[x+f(x)]$
c) $\quad \sum f(x)+x$
d) $\sum x f(x)$

Question 2: This question is attributed with 5 marks if answered properly, the answer is the following:
a)
(2 marks)

b)
(3 marks)
Solution
$P($ exactly x boys $)=P(X=x)={ }_{3} C_{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{3-x}={ }_{3} C_{x}\left(\frac{1}{2}\right)^{3}$

x	0	1	2	3
$f(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Question 3: This question is attributed with 5 marks if answered properly, the answer is the following: Solution
a)
(1.5 marks)

$$
\begin{aligned}
P(X \leq 2, Y \leq 4) & =P_{X Y}(1,2)+P_{X Y}(1,4)+P_{X Y}(2,2)+P_{X Y}(2,4) \\
& =\frac{1}{12}+\frac{1}{24}+\frac{1}{6}+\frac{1}{12}=\frac{3}{8} .
\end{aligned}
$$

b)
(1.5 marks)
$P_{X}(x)= \begin{cases}\frac{1}{6} & x=1 \\ \frac{3}{8} & x=2 \\ \frac{11}{24} & x=3 \\ 0 & \text { otherwise }\end{cases}$

Question 4: This question is attributed with 8 marks if answered properly, the answer is the following:
a)

Solution

i.

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{2} x\left(\frac{1}{2} x\right) d x=\int_{0}^{2} \frac{x^{2}}{2} d x=\left.\frac{x^{3}}{6}\right|_{0} ^{2}=\frac{4}{3}
$$

ii.

$$
E\left(3 X^{2}-2 X\right)=\int_{-\infty}^{\infty}\left(3 x^{2}-2 x\right) f(x) d x=\int_{0}^{2}\left(3 x^{2}-2 x\right)\left(\frac{1}{2} x\right) d x=\frac{10}{3}
$$

iii.

$$
\sigma^{2}=E\left[\left(x-\frac{4}{3}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\frac{4}{3}\right)^{2} f(x) d x=\int_{0}^{2}\left(x-\frac{4}{3}\right)^{2}\left(\frac{1}{2} x\right) d x=\frac{2}{9}
$$

$$
\sigma=\sqrt{\frac{2}{9}}=\frac{\sqrt{2}}{3}
$$

b)

Solution

The joint pdf is given to be a constant in the shaded region in Fig.

$$
\begin{aligned}
& \iint f_{x y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} k d x d y=\int_{0}^{1} k y d y=\frac{k}{2}=1 \Rightarrow k=2 \\
& f_{x}(x)=\int f_{x y}(x, y) d y=\int_{x}^{1} k d y=k(1-x) \quad 0<x<1
\end{aligned}
$$

$$
f_{y}(y)=\int f_{x y}(x, y) d x=\int_{0}^{y} k d x=k y \quad 0<y<1
$$

$$
\begin{array}{cc}
f_{x \mid y}(x \mid y)=\frac{f_{x y}(x, y)}{f_{y}(y)}=\frac{1}{y} & 0<x<y<1 \\
f_{y \mid x}(y \mid x)=\frac{f_{x y}(x, y)}{f_{x}(x)}=\frac{1}{1-x} & 0<x<y<1
\end{array}
$$

Question 5: This question is attributed with 6 marks if answered properly, the answer is the following:

Solution

$$
\begin{gathered}
E(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y=\int_{x=0}^{4} \int_{y=1}^{5} x\left(\frac{x y}{96}\right) d x d y=\frac{8}{3} \\
E(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y=\int_{x=0}^{4} \int_{y=1}^{5} y\left(\frac{x y}{96}\right) d x d y=\frac{31}{9} \\
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x y) f(x, y) d x d y=\int_{x=0}^{4} \int_{y=1}^{5}(x y)\left(\frac{x y}{96}\right) d x d y=\frac{248}{27} \\
E(2 X+3 Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(2 x+3 y) f(x, y) d x d y=\int_{x=0}^{4} \int_{y=1}^{5}(2 x+3 y)\left(\frac{x y}{96}\right) d x d y=\frac{47}{3}
\end{gathered}
$$

Question 6: This question is attributed with 6 marks if answered properly, the answer is the following:
a)
(2 marks)

Solution

Autocorrelation Function Properties:

```
1. }|\mp@subsup{R}{XXX}{}(\tau)|\leq\mp@subsup{R}{XXX}{}(\textrm{O}
2. }\mp@subsup{R}{xXX}{}(-\tau)=\mp@subsup{R}{xX}{}(\tau
3. }\mp@subsup{R}{xx}{}(O)=E[\mp@subsup{X}{}{2}(t)
4. If E[X(t)]=\overline{X}\not=O\mathrm{ and }X(t)\mathrm{ is ergodic with no periodic}
        components, then }\mp@subsup{\operatorname{lim}}{|\tau->\infty}{}\mp@subsup{R}{xx}{}(\tau)=\mp@subsup{\overline{X}}{}{2
5. If X(t) has a periodic component, then }\mp@subsup{R}{xx}{}(\tau)\mathrm{ will have
        a periodic component with the same period.
6. If }X(t)\mathrm{ is ergodic, zero mean, and has no periodic
        components, then }\mp@subsup{\operatorname{lim}}{|\tau->\infty}{}\mp@subsup{R}{xX}{}(\tau)=
7. }\mp@subsup{R}{xX}{}(\tau)\mathrm{ cannot have an arbitrary shape.
```

b)
(4 marks)

Solution

A random process is called wide-sense stationary (WSS) if the two following conditions are true

$$
\begin{aligned}
& E[X(t)]=\bar{X}=\text { constant } \\
& R_{X X X}(t, t+\tau)=E[X(t) X(t+\tau)]=R_{X X X}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& f_{\theta}(\theta)= \begin{cases}\frac{1}{2 \pi} & -\pi<\theta<\pi \\
0 & \text { otherwise }\end{cases} \\
& \mu_{x}(t)=\frac{A}{2 \pi} \int_{-\pi}^{\pi} \cos (\omega t+\theta) d \theta=0 \\
& \left.R_{\chi \chi}(t, t+\tau)=\frac{A^{2}}{2 \pi} \int_{-\pi}^{\pi} \cos (\omega t+\theta) \cos [\omega(t+\tau)+\theta)\right] d \theta \\
& =\frac{A^{2}}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2}[\cos \omega \tau+\cos (2 \omega t+2 \theta+\omega \tau)] d \theta \\
& =\frac{A^{2}}{2} \cos \omega \tau \\
& \text { The autocorrelation function } \\
& R_{x x}(t, t+\tau)=E\left[A \cos \left(\omega_{0} t+\Theta\right) A \cos \left(\omega_{0} t+\omega_{0} \tau+\Theta\right)\right] \\
& =\frac{A^{2}}{2} E\left[\cos \omega_{0} \tau+\cos \left(2 \omega_{0} t+\omega_{0} \tau+2 \Theta\right)\right] \\
& =\frac{A^{2}}{2} \cos \omega_{0} \tau+\frac{A^{2}}{2} E\left[\cos \left(2 \omega_{0} t+\omega_{0} \tau+2 \Theta\right)\right] \\
& =\frac{A^{2}}{2} \cos \omega_{0} \tau \\
& \text { Since } \\
& E[X(t)]=\text { constant } \\
& \text { And } \\
& R_{X X}(t, t+\tau)=R_{X X}(\tau)
\end{aligned}
$$

