Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper

BSc CEE

Signals and Systems (650320+640543)

Final Exam

First semester
Date: 30/01/2020
Section 1
Weighting 40% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Saleh Saraireh

Marking Scheme

Signals and Systems (650320+640543)
The presented exam questions are organized to overcome course material through 7 questions.
The all questions are compulsory requested to be answered.
Marking Assignments
Question 1 This question is attributed with 10 marks if answered properly; the answers are as following:

1) The fundamental period of the sinusoidal DT signal: $\boldsymbol{x}[\boldsymbol{n}]=\boldsymbol{\operatorname { s i n }}\left(\frac{\pi n}{12}+\frac{\pi}{4}\right)$ is
a) 4
b) 8
c) 12
d) 24
2) Let $\boldsymbol{\delta}(\boldsymbol{t})$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \boldsymbol{\delta}(\boldsymbol{t}) \boldsymbol{\operatorname { c o s }}\left(\frac{3 t}{2}\right) d \boldsymbol{t}$ is
a) 0
b) 1
c) - 1
d) $\pi / 2$
3) If $\boldsymbol{x}[\boldsymbol{n}]=\left\{\begin{array}{cc}\mathbf{1}, & \mathbf{0} \leq \boldsymbol{n} \leq \mathbf{4} \\ \mathbf{0}, & \text { Otherwise }\end{array}\right\}$, describe $\boldsymbol{x}[\boldsymbol{n}]$ as superposition of two step functions.
a) $\quad x[n]=u[n]-u[n-5]$
b) $\quad x[n]=u[n-5]-u[n]$
c) $\quad x[n]=u[n-5]+u[n]$
d) $\quad x[n]=u[n]+u[n-5]$
4) Which one of the following systems is causal?
a) $\quad y(t)=x(t)+x(t-3)+x\left(t^{2}\right)$
b) $\quad \boldsymbol{y}(\mathrm{n})=\boldsymbol{x}(\boldsymbol{n}+2)$
c) $\quad y(n)=x\left(2 n^{2}\right)$
d) $y(t)=x(t-1)+x(t-2)$
5) A discrete linear time-invariant system is Bounded Input, Bounded Output (BIBO) stable if

a)	$\sum_{k=-\infty}^{\infty}\|y[k]\|<\infty$
b)	$\sum_{k=-\infty}^{\infty}\|h[k]\|<\infty$
c)	$\sum_{k=-\infty}^{\infty}\|y[k]\| \leq \sum_{k=-\infty}^{\infty}\|h[k]\|$
d)	$\sum_{k=-\infty}^{\infty}\|y[k]\| \leq \sum_{k=-\infty}^{\infty}\|x[k]\|$

6) The step response of a system can be written as

a)	$s(t)=u(t) h(t)$
$\mathbf{b)}$	$s(t)=u(t) * h(t)=\int_{-\infty}^{\infty} \delta(t) h(t-\tau) d \tau$
c)	$s(t)=u(t) * h(t)=\int_{-\infty}^{\infty} u(\tau) h(t-\tau) d \tau$
d)	None of above

7) Determine the convolution sum of two sequences $\mathbf{x}(\mathbf{n})=\{\mathbf{3}, \mathbf{2}, \mathbf{1}, \mathbf{2}\}$ and $\mathbf{h}(\mathbf{n})=\{\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{2}\}$

$$
\begin{array}{ll}
\text { a) } & \mathrm{y}(\mathrm{n})=\{3,8,8,12,9,4,4\} \\
\text { b) } & \mathrm{y}(\mathrm{n})=\{3,8,8,1,9,4,4\} \\
\text { c) } & \mathrm{y}(\mathrm{n})=\{3,8,3,12,9,4,4\} \\
\text { d) } & \mathrm{y}(\mathrm{n})=\{3,8,8,12,9,1,4\}
\end{array}
$$

8) The Fourier series of an odd periodic function, contains only
a) Sine terms
b) Cosine terms
c) Odd harmonics
d) Even harmonics
9) If $\mathbf{x}(\mathbf{n})=\bar{A} \mathbf{e}^{\mathbf{j} \omega \mathbf{n}}$ is the input of an $\mathbf{L T I}$ system and $\mathbf{h (n)}$ is the response of the system, then what is the output $\mathbf{y}(\mathbf{n})$ of the system?
a) $\quad H(-\omega) x(n)$
b) $\quad-H(\omega) x(n)$
c) $\quad H(\omega) x(n)$
d) None of the mentioned
10) If $\boldsymbol{Y}(\boldsymbol{s})$ is the Laplace-transform of the output function, $\boldsymbol{X}(\boldsymbol{s})$ is the Laplace-transform of the input function and $\boldsymbol{H}(\boldsymbol{s})$ is the Laplace-transform of system function of the LTI system, then $\boldsymbol{H}(\boldsymbol{s})=$?
a) $\quad X(s) / Y(s)$
b) $\quad Y(s) / X(s)$
c) $\quad Y(s) \cdot X(s)$
d) None of the mentioned

Question 2: This question is attributed with 5 marks if answered properly; the answers are as following:
a)
(3 marks)

system	Linear	Time-invariant	Causal
$\boldsymbol{y}(\boldsymbol{t})=\mathbf{3 x (t) \operatorname { c o s } (t)}$	$\sqrt{ }$	\times	$\sqrt{ }$
$\boldsymbol{y}(\boldsymbol{t})=\int_{t}^{\boldsymbol{t + 1}} \boldsymbol{x}(\lambda) d \lambda$	$\sqrt{2}$	$\sqrt{ }$	\times

b)
(2 marks)

Solution

$$
h_{\text {overall }}(n)=h_{1}(n) *\left[\left(h_{2}(n) * h_{3}(n)\right)+h_{4}(n)\right]
$$

Question 3: This question is attributed with 5 marks if answered properly; the answers are as following:

Input: $\boldsymbol{x}[\boldsymbol{n}]$
Impulse Response: $\boldsymbol{h}[\boldsymbol{n}]$
$y[n]=\sum x[k] \cdot h[n-k]$
$y[0]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[0-k]=x[0] \cdot h[0]=3 \cdot 2=6$
$y[1]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[1-k]=x[0] \cdot h[1-0]+x[1] \cdot h[1-1]+\ldots$
$=x[0] \cdot h[1]+x[1] \cdot h[0]=3 \cdot 1+4 \cdot 2=11$
$y[2]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[2-k]=x[0] \cdot h[2-0]+x[1] \cdot h[2-1]+x[2] \cdot h[2-2]+\ldots$

$$
=x[0] \cdot h[2]+x[1] \cdot h[1]+x[2] \cdot h[0]=3 \cdot 0+4 \cdot 1+5 \cdot 2=14
$$

$y[3]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[3-k]=x[0] \cdot h[3-0]+x[1] \cdot h[3-1]+x[2] \cdot h[3-2]+x[3] \cdot h[3-3]+\ldots$
$=x[0] \cdot h[3]+x[1] \cdot h[2]+x[2] \cdot h[1]+x[3] \cdot h[0]=0+0+5 \cdot 1+0=5$
$y[4]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[4-k]=x[0] \cdot h[4-0]+x[1] \cdot h[4-1]+x[2] \cdot h[4-2]+\ldots=0$

Output: $\boldsymbol{y}[\boldsymbol{n}]$

Question 4: This question is attributed with 4 marks if answered properly, the answer are as following:

Solution

We have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n x}{2}+b_{n} \sin \frac{\pi n x}{2}\right),
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{2}\left(\int_{-2}^{0}(-1) d x+\int_{0}^{2} 2 d x\right)=1 \\
a_{n}=\frac{1}{2}\left(\int_{-2}^{0}(-1) \cos \frac{\pi n x}{2} d x+\int_{0}^{2} 2 \cos \frac{\pi n x}{2} d x\right)= \\
\frac{1}{2}\left((-1)\left[\frac{2}{\pi n} \sin \frac{\pi n x}{2}\right]_{-2}^{0}+2\left[\frac{2}{\pi n} \sin \frac{\pi n x}{2}\right]_{0}^{2}\right)=0, \quad n>0 \\
b_{n}=\frac{1}{2}\left(\int_{-2}^{0}(-1) \sin \frac{\pi n x}{2} d x+\int_{0}^{2} 2 \sin \frac{\pi n x}{2} d x\right)= \\
\frac{1}{2}\left(-(-1)\left[\frac{2}{\pi n} \cos \frac{\pi n x}{2}\right]_{-2}^{0}-2\left[\frac{2}{\pi n} \cos \frac{\pi n x}{2}\right]_{0}^{2}\right)= \\
\frac{1}{\pi n}(1-\cos \pi n)-2 \frac{1}{\pi n}(\cos \pi n-1)=\frac{3}{\pi n}\left(1-(-1)^{n}\right) .
\end{gathered}
$$

and

Therefore, we have

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{3}{\pi n}\left(1-(-1)^{n}\right) \sin \frac{\pi n x}{2} .
$$

Question 5: This question is attributed with 9 marks if answered properly, the answers are as following:
a)
(3 marks)

b)

c)

Solution
Taking Fourier Transform on both sides

$$
\begin{aligned}
& (j w)^{2} y(w)+4 j w y(w)+3 y(w)=j w x(w)+2 x(w) \\
& H(w)=\frac{v(w)}{x(w)}=\frac{2+j w}{(j w)^{2}+4 j w+3}=\frac{2+j w}{(1+j w)(3+j w)} \\
& H(w)=\frac{1}{2} \cdot \frac{1}{1+j w}+\frac{1}{2} \cdot \frac{1}{3+j w}
\end{aligned}
$$

Taking the inverse Fourier Transform

$$
\mathbf{h}(t)=\frac{1}{2} e^{-t} u(t)+\frac{1}{2} e^{-3 t} u(t)
$$

Question 6: This question is attributed with 3 marks if answered properly, the answers are as following:

Solution

$x(t)=e^{a t} u(t-k)$
$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{k}^{\infty} e^{a t} e^{-s t} d t=\int_{k}^{\infty} e^{-(s-a) t} d t=-\left.\frac{1}{s-a} e^{-(\sigma+j \omega-a) t}\right|_{k} ^{\infty}$
$X(s)=-\frac{1}{s-a}\left(e^{-(\sigma+j \omega-a) \infty}-e^{-(\sigma+j \omega-a) k}\right), \quad e^{(j \omega)(\pm \infty)} \leq 1$
$X(s)$ is integrable if $\sigma-a>0 \rightarrow \operatorname{Re}\{s\}>a$

$$
\rightarrow X(s)=\frac{e^{a k}}{s-a} e^{-s k}, \operatorname{Re}\{s\}>a
$$

For the FT to exist, we need $a<0$ (so that the $j \omega$ axis is included in the ROC)

Question 7: This question is attributed with 4 marks if answered properly, the answers are as following:

Solution

```
% Set the time from -5 to 10 with a sampling rate of 0.002s
tl = -5:0.002:10;
xl = 5*exp(-0.2*tl).*sin(2*pi*tl);
subplot(3,1,1);
% plot the first CT signal
plot(tl,xl);
grid on;
xlabel('time (t)');
ylabel('Amplitude');
title('5exp(-0.2t)sin(2\pi t)');
% Set the time from -l to l5 with a sampling rate of 0.001s
t2 = -1:0.001:15;
x2 = exp((-4*pi-0.5)*t2).*(t2>=0);
% plot the second CT signal
subplot(3,1,2);
plot(t2,x2);
grid on;
xlabel('time (t)')
ylabel('Amplitude');
title('5exp[(-4*pi-0.5)t]u(t)');
% Compute the convolution and plot the result
y = conv(xl, x2);
t3 = 0:length(y)-1;
subplot(3,1,3);
plot(t3,y);
grid on;
xlabel('time (t)')
ylabel('Amplitude');
title('convolution xl with x2');
```

