Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of Communication \& Electronics Engineering

Probability and Random Variables

(650364)

First Exam

First semester
Date: 25/11/2019
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Saleh Saraireh

Marking Scheme
 Probability and Random Variables (650364)

The presented exam questions are organized to overcome course material through 4 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1: This question is attributed with 6 marks if answered properly, the answer is the following:

1) The type of probability that uses sample spaces is called
a) Classical probability
b) Subjective probability
c) Empirical probability
d) Relative probability
2) When a coin is tossed and then a die is rolled, the probability of getting a tail on the coin and an odd number on the die is
a) $1 / 2$
b) $1 / 4$
c) $3 / 4$
d) $1 / 6$
3) $\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})=\boldsymbol{P}(\boldsymbol{A}) \cdot \boldsymbol{P}(\boldsymbol{B})$, then \boldsymbol{A} and \mathbf{B} are
a) Mutually Exclusive Events
b) Independent Events
c) Dependent Events
d) Equally Likely Events
4) At a high school with $\mathbf{3 0 0}$ students, $\mathbf{6 2}$ play football, $\mathbf{3 3}$ play baseball, and $\mathbf{1 4}$ play both sports. If a student is selected at random, find the probability that the student plays football or baseball.
a) $109 / 300$
b) $14 / 300$
c) $19 / 60$
d) $27 / 100$
5) In binomial distribution $\mathbf{n}=6$ and $\mathbf{p}=0.9$, then the value of $\mathbf{P}(\mathbf{X}=7)$ is
a) Zero
b) More than zero
c) Less than zero
d) One
6) For a probability density function (PDF), the probability of a single point is
a) Constant
b) 0
c) $\quad 1$
d) 2

Question 2: This question is attributed with 7 marks if answered properly, the answer is the following: a)
Solution
b)

Solution

$$
\begin{aligned}
n=8, x=3, p= & \frac{1}{2} \\
P(3 \text { heads }) & ={ }_{8} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5} \\
& =56\left(\frac{1}{8}\right)\left(\frac{1}{32}\right) \\
& =56 \cdot \frac{1}{256} \\
& =\frac{7}{32}=0.21875
\end{aligned}
$$

c)
(1.5 marks)

Solution

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
P(A \cap B) & =P(A)+P(B)-P(A \cup B) \\
& =\frac{1}{2}+\frac{2}{3}-\frac{5}{6} \\
& =\frac{1}{3} .
\end{aligned}
$$

(2 marks)

Solution

$$
\begin{aligned}
& \mathbf{A}=\{\mathbf{1 , 3 , 5}\}, \mathrm{B}=\{1,2,3\} \\
& P(A)=\frac{|A|}{|S|}=\frac{|\{1,3,5\}|}{6}=\frac{1}{2} \\
& P(A \mid B)=\frac{|A \cap B|}{|B|}=\frac{2}{3} .
\end{aligned}
$$

Question 3: This question is attributed with 4 marks if answered properly, the answer is the following:
a)
(2 marks)

Solution

$$
F_{X}(x)= \begin{cases}0 & \text { for } x<3 \\ P_{X}(3)=0.3 & \text { for } 3 \leq x<5 \\ P_{X}(3)+P_{X}(5)=0.5 & \text { for } 5 \leq x<8 \\ P_{X}(3)+P_{X}(5)+P_{X}(8)=0.8 & \text { for } 8 \leq x<10 \\ 1 & \text { for } x \geq 10\end{cases}
$$

b)
(2 marks)

Solution

we can use $\int_{-\infty}^{\infty} f_{X}(u) d u=1$:

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f_{X}(u) d u \\
& =\int_{-1}^{1} c u^{2} d u \\
& =\frac{2}{3} c
\end{aligned}
$$

Question 4: This question is attributed with 3 marks if answered properly, the answer is the following:

Solution

$\mathrm{H}=\{$ Student has long hair" $\}$.
$\mathrm{N}=\{$ Student is female" $\}$.
$\mathrm{M}=\{$ Student is male" $\}$.
N and M decompose the sample space, so the formula of total probability yields

$$
\begin{aligned}
& P(H)=P(N) P(H \mid N)+P(M) P(H \mid M) \\
&=0.27 \cdot 0.75+0.73 \cdot 0.15 \\
&=0.312 \\
& \text { Recall: } P(H \mid N)=0.75, P(N)=0.27, P(H)=0.312
\end{aligned}
$$

Bayes' formula yields

$$
P(N \mid H)=P(N) \frac{P(H \mid N)}{P(H)}=0.27 \cdot \frac{0.75}{0.312} \approx 65 \% .
$$

