Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper

BSc CEE

Signals and Systems (650320+640543)

First Exam

First semester
Date: 17/11/2019
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Eng. Nada Khatib

Marking Scheme
 Signals and Systems (650320+640543)

The presented exam questions are organized to overcome course material through 5 questions.
The all questions are compulsory requested to be answered.
Question 1 This question is attributed with 5 marks if answered properly; the answers are as following:

1) The unit step function is related to the unit impulse function via which of the following relationships
a) $u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$
b) $u(t)=\int_{0}^{t} \delta(\tau) d \tau$
c) $u(t)=\int_{t}^{\infty} \delta(\tau) d \tau$
d) $u(t)=\sum_{0}^{\infty} \delta(t-n)$
2) If you evaluate $\int_{-\infty}^{\infty}(t-1) \delta(t-5) d t$ you get
a) 0
b) 5
c) 4
d) $t-5$
3) The system is linear, if it is both
a) Additive and commutative
b) Additive and associative
c) Additive and distributive
d) Additive and homogeneous
4) The system $y(t)=x(t) \cosh (t)$ is
a) BIBO stable
b) Only memoryless
c) Memoryless and causal
d) Causal and BIBO stable
5) Which of the following systems is time invariant?
a) $y(t)=x(t)+x(t-1)$
b) $\mathbf{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathbf{1}-\mathrm{t})$
c) $\mathbf{y}(\mathrm{t})=-\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathbf{1}-\mathrm{t})$
d) $\mathbf{y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t})+\mathrm{x}(\mathrm{t})$

Question 2: This question is attributed with 4 marks if answered properly,

Solution

Time shifting

Given a D-T signal $\boldsymbol{x}[\boldsymbol{n}]$ and a positive integer \boldsymbol{p}, then

- $\boldsymbol{y}[\boldsymbol{n}]=\boldsymbol{x}[\boldsymbol{n}-\boldsymbol{p}]$ is the \boldsymbol{p}-step right shift of $\boldsymbol{x}[\boldsymbol{n}]$ that results in a delay of the signal by \boldsymbol{p} units of time (replacing \boldsymbol{n} by $\boldsymbol{n}-\boldsymbol{p}$).
- $\boldsymbol{y}[\boldsymbol{n}]=\boldsymbol{x}[\boldsymbol{n}+\boldsymbol{p}]$ is the \boldsymbol{p}-step left shift of $\boldsymbol{x}[\boldsymbol{n}]$ that results in an advance of the signal by \boldsymbol{p} units of time (replacing \boldsymbol{n} by $\boldsymbol{n}+\boldsymbol{p}$).

Time reversal or Folding

Let $\boldsymbol{x}[\boldsymbol{n}]$ be the original sequence, and $\boldsymbol{y}[\boldsymbol{n}]$ be reflected sequence, then $\boldsymbol{y}[\boldsymbol{n}]$ is defined by $y[n]=x[-n]$,

Time scaling

Let $\boldsymbol{x}[\boldsymbol{n}]$ denote a D-T signal, then the signal $\boldsymbol{y}[\boldsymbol{n}]$ obtained by scaling the independent variable, time \boldsymbol{n}, by a factor \boldsymbol{a} is defined by

$$
y[n]=x[a n], a>0 .
$$

\checkmark If $\boldsymbol{a}>\mathbf{1}$, the signal is a compressed version of $\boldsymbol{x}[\boldsymbol{n}]$ and some values of the discrete time signal
$\boldsymbol{y}[\boldsymbol{n}]$ are lost.
\checkmark if $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, then the signal $\boldsymbol{y}[\boldsymbol{n}]$ is an expanded version of $\boldsymbol{x}[\boldsymbol{n}]$.
Manipulation involving the signal amplitude (dependent variable):
Transformations performed on amplitude (dependent variable) are shown in table 2-2.

Question 3: This question is attributed with 5 marks if answered properly,
a)

Solution

$$
i(t)=A u_{o}\left(t+\frac{T}{2}\right)-A u_{o}\left(t-\frac{T}{2}\right)=A\left[u_{o}\left(t+\frac{T}{2}\right)-u_{o}\left(t-\frac{T}{2}\right)\right]
$$

b)

(2 marks)

Solution

The \boldsymbol{N}-point non-causal MA average filter can be expressed by the following equation:

$$
y[n]=\frac{1}{N} \sum_{k=\frac{-(N-1)}{2}}^{\frac{N-1}{2}} x[n-k] \text {, where } N \text { is an odd and positive integer. }
$$

The \boldsymbol{N}-point non-causal Exponentially Weighted Moving (EWMA) Filter defined by

$$
y[n]=\sum_{i=\frac{-(N-1)}{2}}^{\frac{N-1}{2}} a \cdot b^{i} \cdot x[n-i], b-\text { real number, } 0<b<1, a-\text { positive number, } a=\frac{1-b}{1-b^{N}} .
$$

c)
(2 marks)

Solution

Question 4: This question is attributed with 2 marks if answered properly,

Solution

- This system has memory, because it depends on future values of the input.

This system is not stable, because if $\boldsymbol{x}[\boldsymbol{n}]$ is bounded, $\boldsymbol{y}[\boldsymbol{n}]$ is still grows without bound because of the presence of the $-\infty$ term in the summation limits.

- This system is non-causal, because it depends on the input at future times.
- This system is linear. Consider

$$
\begin{aligned}
& \hat{T}\left\{a x_{1}[n]\right\}=a \sum_{k=-\infty}^{n} x_{1}[k+2]=a y_{1}[n] \\
& \hat{T}\left\{b x_{2}[n]\right\}=b \sum_{k=-\infty}^{n} x_{2}[k+2]=b y_{2}[n] \\
& a y_{1}[n]+b y_{2}[n]=a \sum_{k=-\infty}^{n} x_{1}[k+2]+b \sum_{k=-\infty}^{n} x_{2}[k+2] \\
& \hat{T}\left\{a x_{1}[n]+b x_{2}[n]\right\}=\sum_{k=-\infty}^{n}\left(a x_{1}[k+2]+b x_{2}[k+2]\right)=a \sum_{k=-\infty}^{n} x_{1}[k+2]+b \sum_{k=-\infty}^{n} x_{2}[k+2]
\end{aligned}
$$

Question 5: This question is attributed with 4 marks if answered properly,

Solution

\% Part(a) \%

$\mathbf{t}=\mathbf{- 5 : 0 . 0 0 1 : 5 ; ~ \% ~ S e t ~ t h e ~ t i m e ~ f r o m ~}-5$ to 5 with a sampling rate of 0.001 s .
$\mathbf{x l}=5 * \sin (2 * p i * t) . * \cos (p i * t-8) ; \quad \%$ compute function $x l$
$\%$ plot $x l(t)$
subplot (2,1,1); \% select the 1st out of 2 subplots plot (t,xl); \% plot a CT signal
grid on; \% turn on the grid
xlabel ('time (t)'); \% Label the x -axis as time
ylabel ('5sin(2\pi t)cos(\pit-8)'); \% Label the y-axis
title ('Part (a)'); \% Insert the title
(2 marks)
\% Part(b) \%
n = -5:25;
$\mathrm{x} 2=2$ * 1.1.^(1.8*n) $-2.1 * 0.9 . \wedge(0.7 * n)$;
\% plot x2(n)
subplot(2,1,2), \% select the 2nd out of 2 subplots
stem(n, x2, 'filled'); \% plot a DT signal
grid
xlabel(' n ')
ylabel('2(1.1)^\{1.8n\}-2.1(0.9)^0.7n')
title('Part (b)')

