

Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper

BSc CEE

Signals and Systems (650320+640543)

First Exam

First semester

Date: 17/11/2019

Section 1

Weighting 20% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Eng. Nada Khatib

Marking Scheme Signals and Systems (650320+640543)

The presented exam questions are organized to overcome course material through 5 questions.

The *all questions* are compulsory requested to be answered.

<u>Question</u> 1 This question is attributed with 5 marks if answered properly; the answers are as following:
1) The unit step function is related to the unit impulse function via which of the following relationships

a) $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$ b) $u(t) = \int_{0}^{t} \delta(\tau) d\tau$

c)
$$u(t) = \int_{t}^{\infty} \delta(\tau) d\tau$$

d)
$$u(t) = \sum_{0}^{\infty} \delta(t-n)$$

2) If you evaluate $\int_{-\infty}^{\infty} (t-1)\delta(t-5)dt$ you get

- a) O
- **b)** 5
- **c)** 4
- **d**) t 5
- **3)** The system is **linear**, if it is both
 - a) Additive and commutative
 - b) Additive and associative
 - c) Additive and distributive
 - d) Additive and homogeneous
- 4) The system $y(t) = x(t) \cosh(t)$ is
 - a) BIBO stable
 - b) Only memoryless
 - c) Memoryless and causal
 - d) Causal and BIBO stable
- 5) Which of the following systems is time invariant?
 - **a)** y(t) = x(t) + x(t-1)
 - **b)** y(t) = x(t) + x(1-t)
 - c) y(t) = -x(t) + x(1-t)
 - **d)** y(t) = x(2t) + x(t)

Question 2: This question is attributed with 4 marks if answered properly,

Solution

Time shifting

Given a D-T signal x[n] and a positive integer p , then

- y[n] = x[n-p] is the *p*-step right shift of x[n] that results in a **delay** of the signal by *p* units of time (replacing *n* by n-p).
- y[n] = x[n+p] is the *p*-step left shift of x[n] that results in an **advance** of the signal by *p* units of time (replacing *n* by n+p).

Time reversal or Folding

Let x[n] be the original sequence, and y[n] be reflected sequence, then y[n] is defined by y[n] = x[-n],

Time scaling

Let x[n] denote a D-T signal, then the signal y[n] obtained by scaling the independent variable, time n, by a factor a is defined by

$$y[n] = x[an], a > 0.$$

✓ If a > 1, the signal is a compressed version of x[n] and some values of the discrete time signal

		ble) are shown in table 2-2.	
Operation	Table 2-2: Transformation pe	·	Physical device
Operation	$\frac{\text{D-T signals}}{y[n] = cx[n]}$	$\frac{\text{C-T signals}}{y(t) = cx(t)}$	Physical device
1. Amplitude scaling	C - scalir	• • • • • •	Electronic amplifier
2. Addition	$y[n] = x_1[n] + x_2[n]$	-	Audio mixer
3. Multiplication	$y[n] = x_1[n] \cdot x_2[n]$	·	Modulator
4. Differentiation	Difference equation	$y(t) = d \frac{x(t)}{dt}$	Inductor
5. Integration	Summation	$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$	Capacitor
e <mark>stion 3:</mark> This question is a a)	ttributed with 5 marks if ans	swered properly,	(1 mark)
	Solutio	0 n	
$i(t) = Au_0 \Big(t + \frac{1}{2}\Big)$	$\frac{T}{2}\right) - Au_0\left(t - \frac{T}{2}\right)$	$= A \left[u_0 \left(t + \frac{T}{2} \right) \right]$	$-u_0\left(t-\frac{T}{2}\right)$
b)			(2 marks)
	Solutio	on	
	A average filter can be expressed b		
$\frac{N-1}{2}$			
$y[n] = \frac{1}{N} \sum_{k=\frac{-(N-1)}{2}} x[n - \frac{1}{N}]$	- k] , where $ N $ is an odd and pos	sitive integer.	
The N -point non-causal Ex	ponentially Weighted Moving (EV	WMA) Filter defined by	
$\frac{N-1}{2} = h^{i} + h^{i}$	i], b – real number, $0 < b < 1$,	a – positive number, $a = \frac{1}{1-1}$	$\frac{-b}{b^{N}}$.
$y[n] = \sum_{i=\frac{-(N-1)}{i}} a \cdot b^{i} \cdot x[n-1]$			
$y[n] = \sum_{i=\frac{-(N-1)}{2}}^{N-1} d \cdot b \cdot x[n-1]$			(2 marks)
$i = \frac{-(N-1)}{2}$	Solutio	on	(2 marks)
$i = \frac{-(N-1)}{2}$		$\frac{1}{2} + 2$	(2 marks)

- presence of the -∞ term in the summation limits.
 This system is non-causal, because it depends on the input at future times.
 This system is linear. Consider

$$\hat{T} \{ ax_1[n] \} = a \sum_{k=-\infty}^n x_1[k+2] = ay_1[n]$$

$$\hat{T} \{ bx_2[n] \} = b \sum_{k=-\infty}^n x_2[k+2] = by_2[n]$$

$$ay_1[n] + by_2[n] = a \sum_{k=-\infty}^n x_1[k+2] + b \sum_{k=-\infty}^n x_2[k+2]$$

$$\hat{T} \{ ax_1[n] + bx_2[n] \} = \sum_{k=-\infty}^n (ax_1[k+2] + bx_2[k+2]) = a \sum_{k=-\infty}^n x_1[k+2] + b \sum_{k=-\infty}^n x_2[k+2]$$

Question 5: This question is attributed with 4 marks if answered properly,

