Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of CE

Module: Microprocessors (630313)

Final Exam
First Semester
Date: 21/01/2019
Section 1
Weighting 40% of the module total

Lecturer:
Coordinator:
Internal Examiner:
Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Naser Halasa

Marking Scheme

Microprocessors (630313)
The presented exam questions are organized to overcome course material, the exam contains 7 questions; all questions are compulsory requested to be answered. Thus, the student is permitted to answer any question out of the existing ones in this section.

Marking Assignments

The following scheme shows the marks assignments for each question. They show also the steps for which a student can get marks along the related procedure he/she achieves.

Question 1This question is attributed with 10 marks if answered properly
The answer for this question as the following:

1) The first processor that includes real mode in the Intel microprocessor family was
a) $\mathbf{8 0 8 5}$
b) 8086
c) 80286
d) $\mathbf{8 0 3 8 6}$
2) Which of the following is an invalid instruction?
a) add $d x, d x$
b) MOV AX, CS
c) sub bar, 5
d) MOV AL, DI
3) The directive that can be used to declare variables to store binary-coded decimal numbers (packed BCD Integers) is
a) SWORD
b) REALIO
c) $Q W O R D$
d) TBYTE
4) The variable definition smallArray byte 2Ch, $\mathbf{5}$ DUP ("exam") will reserve ------- bytes of memory.
a) 21
b) 26
c) 6
d) None of above
5) The output of the linker (LINK command) is stored in a file with the extension
a) . lis
b) .obj
c). $\ln k$
d) .exe
6) What will be the values of the Sign, and Zero flags after the following instructions have executed?
```
            mov ax,620h
                    sub ah,0F6h
```

a) $\mathrm{S}=0, \mathrm{Z}=1$
b) $\quad S=0, Z=0$
c) $\mathrm{S}=1, \mathrm{Z}=0$
d) $\quad S=1, Z=1$
7) The conditional branch instruction JNS performs the operations when if \qquad
a) $\mathbf{Z F}=\mathbf{0}$
b) $\mathbf{P F}=0$
c) $\mathrm{SF}=0$
d) $\mathbf{C F}=0$
8) The instruction TEST is most similar to----------
a) $O R$
b) AND
c) $X O R$
d) NOT
9) The interrupt vector for $\mathbf{I N T} \mathbf{1 7 H}$ is stored in memory at:
a) 0005 CH
b) 00068 H
c) 000 C 5 H
d) $\mathbf{0 0 0 1 7 \mathrm { H }}$
10) Which of the following are performed when an interrupt occurs:
(I) FLAGS register is pushed to the stack
(II) CS register is pushed to the stack
(III) IP register is pushed to the stack
a) (I) and (II) and (III)
b) (I) and (II) only
c) (II) and (III) only
d) (I) and (III) only

Question 2 This question is attributed with 6 marks if answered properly
a) Explain 8086 flag register?
(3 marks)

Solution

1. Carry Flag (CF) - this flag is set to l when there is an unsigned overflow. For example when you add bytes $255+1$ (result is not in range $0 . . .255$). When there is no overflow this flag is set to 0 .
2. Parity Flag (PF) - this flag is set to l when there is even number of one bits in result, and to 0 when there is odd number of one bits.
3. Auxiliary Flag (AF) - set to l when there is an unsigned overflow for low nibble (4 bits).
4. Zero Flag (ZF) - set to l when result is zero. For non-zero result this flag is set to 0 .
5. Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set to 0 . (This flag takes the value of the most significant bit.)
6. Trap Flag (TF) - Used for on-chip debugging.
7. Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts from external devices.
8. Direction Flag (DF) - this flag is used by some instructions to process data chains, when this flag is set to 0 - the processing is done forward, when this flag is set to l the processing is done backward.
9. Overflow Flag (OF) - set to 1 when there is a signed overflow. For example, when you add bytes $100+50$ (result is not in range -128...127).
b) What is the use of Interrupt vector table of $\mathbf{8 0 8 6}$ microprocessor?
(2 marks

Solution

The interrupt vector table contains 256 four byte entries, containing the CS:IP interrupt vectors for each of the 256 possible interrupts. The table is used to locate the interrupt service routine addresses for each of those interrupts.

c) What is an instruction queue? Explain?
(1 mark)

Solution

This is introduced in 8086 processor.This queue is in the BIU and is used for storing the predecoded instructions. This will overlap the fetching and execution cycle. The EU will take the instructions from the queue for decoding and execution.

Question 3 This question is attributed with 4 marks, if answered properly.
The answer for this question as the following:
Write instruction(s) to perform the following tasks:

1)	Multiply AX by 5	MOV CX, 5 MUL CX
2)	Three different instructions that will clear the contents of register CL	1) MOV CL, OH 2) XOR CL, CL 3) SUB, CL, CL
3)	Jump to label 'HELP' if AX is negative	TEST AX, 8000H JNZ HELP
4)	sets (l) the right most five bits of DI without changing the remaining bits of DI.	OR DI,001FH

Question 4 This question is attributed with 6 marks, if answered properly.
The complete code for this question as the following:
a)

Solution

We can count elements of the BW array as follows:
AW DW 000Ah, 010Ah, 020Ah, 030Ah, 040Ah
BW BW+2 BW+4 BW+6
BW DW 000Bh, 010Bh, 020Bh, 030Bh
$\mathrm{BW}+8 \quad \mathrm{BW}+10 \quad \mathrm{BW}+12 \quad .$.
CW DW 000Ch, 010Ch, 020Ch, 030Ch, 040Ch, 050Ch
The following array references have the results given:
mov ax, $[B W+2] ; \quad a x=010 B h$
mov ax, [AW + 20]; $\quad a x=010 \mathrm{Ch}$
mov ax, [BW-4]; ax = 030Ah
mov ax, 1234h
xchg ah, al; ax=3412
MOV BX, B372h
MOVZX EAX, BX ; EAX=0000B372h
MOV BX, B372h
MOVSX DX, BL; \quad DX=0072h
b)
(3 marks)

Question 5 This question is attributed with 5 marks, if answered properly.
The answer for this question as the following:

Solution

Title string operation .model small
.stack 100h
.data
String db "exercise",0
Length db (\$-String) -1
Ans db ?
.code
Main proc
MOV AX, @data
MOV DS, AX
MOV AL,00H
MOV SI, offset String
MOV CX, Length (l mark)
Back: MOV BH, [SI]
CMP BH, 'e'
JNZ Label
INC AL
Label: INC SI
LOOP Back
MOV Ans, AL
MOV AH, 4CH
INT 21H
Main endp
End Main

Question 6 This question is attributed with 3 marks, if answered properly.
The answer for this question as the following:

Solution

```
mov ax, A
cmp ax, B
jne DoIF
    mov ax, X
    cmp ax, Y
jng EndOfIf
    mov ax, Z
    cmp ax, T
    jnl EndOfIf
; THEN Block:
DoIf: mov ax, D
mov C, ax
; End of IF statement
EndOfIF:
```

Question 7 This question is attributed with 6 marks, if answered properly.
The answer for t his question as the following:

Solution

Title ArraysOperations .model small
.data
InputArr db 1,2,3,1,3,5,6,3,4,5
OddArr db 10 dup(?)
EvenArr db 10 dup(?)
OddAdd db 0
EvenAdd db 0
.code
Main PROC
movax,@data
mov ds,ax
LEA BX,InputArr
LEA SI, OddArr
LEA DI,EvenArr
movex, 10
mov dh, 02
(2 marks)
Ll:
mov ah, 00
mov al,[BX]
mov dl,al
div $d h$
cmp ah,00 (1 mark)
je EVEN1
mov [DI], dl
add OddAdd,dl
INC DI
INC BX
Loop Ll
jmp CAL (l mark)
EVEN1:
mov [SI],dl
add EvenAdd,dl
INC SI
INC BX
Loop Ll (l mark)
CAL:
mov ax, 0000
mov bx,0000
mov al,OddAdd
mov bl,EvenAdd
mov ax,4C00h
int 2lh
Main endp
End Main

