
 Philadelphia University

Faculty of Engineering

Marking Scheme

Examination Paper

DDeeppaarrttmmeenntt ooff CCEE

Module: Microprocessors (630313)

 Final Exam First Semester Date: 21/01/2019

Section 1

 Weighting 40% of the module total

Lecturer: Dr. Qadri Hamarsheh

Coordinator: Dr. Qadri Hamarsheh

Internal Examiner: Dr. Naser Halasa

Marking Scheme

Microprocessors (630313)

The presented exam questions are organized to overcome course material, the exam contains 7 questions; all

questions are compulsory requested to be answered. Thus, the student is permitted to answer any question out

of the existing ones in this section.

Marking Assignments

The following scheme shows the marks assignments for each question. They show also the steps for which a

student can get marks along the related procedure he/she achieves.

Question 1This question is attributed with 10 marks if answered properly
The answer for this question as the following:

1) The first processor that includes real mode in the Intel microprocessor family was ---------------

a) 8085 b) 8086

c) 80286 d) 80386

2) Which of the following is an invalid instruction?

a) add dx,dx b) MOV AX, CS

c) sub bar,5 d) MOV AL, DI

3) The directive that can be used to declare variables to store binary-coded decimal numbers

(packed BCD Integers) is ---------------

a) SWORD b) REAL10

c) QWORD d) TBYTE

4) The variable definition smallArray byte 2Ch, 5 DUP (“exam”) will reserve ------- bytes of

memory.

a) 21 b) 26

c) 6 d) None of above

5) The output of the linker (LINK command) is stored in a file with the extension

a) .lis b) .obj

c) .lnk d) .exe

6) What will be the values of the Sign, and Zero flags after the following instructions have

executed?

mov ax,620h

sub ah,0F6h

a) S=0,Z=1 b) S=0,Z=0

c) S=1,Z=0 d) S=1,Z=1

7) The conditional branch instruction JNS performs the operations when if __

a) ZF =0 b) PF=0

c) SF=0 d) CF=0

8) The instruction TEST is most similar to----------

a) OR b) AND

c) XOR d) NOT

9) The interrupt vector for INT 17H is stored in memory at:

a) 0005CH b) 00068H

c) 000C5H d) 00017H

10) Which of the following are performed when an interrupt occurs:

(I) FLAGS register is pushed to the stack
(II) CS register is pushed to the stack
(III) IP register is pushed to the stack

a) (I) and (II) and (III) b) (I) and (II) only

c) (II) and (III) only d) (I) and (III) only

Question 2 This question is attributed with 6 marks if answered properly

a) Explain 8086 flag register? (3 marks)

Solution
1. Carry Flag (CF) - this flag is set to 1 when there is an unsigned overflow. For

example when you add bytes 255 + 1 (result is not in range 0...255). When there is

no overflow this flag is set to 0.

2. Parity Flag (PF) - this flag is set to 1 when there is even number of one bits in

result, and to 0 when there is odd number of one bits.

3. Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low nibble

(4 bits).

4. Zero Flag (ZF) - set to 1 when result is zero. For non-zero result this flag is set

to 0.

5. Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set

to 0. (This flag takes the value of the most significant bit.)

6. Trap Flag (TF) - Used for on-chip debugging.

7. Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts

from external devices.

8. Direction Flag (DF) - this flag is used by some instructions to process data

chains, when this flag is set to 0 - the processing is done forward, when this flag

is set to 1 the processing is done backward.

9. Overflow Flag (OF) - set to 1 when there is a signed overflow. For example,

when you add bytes 100 + 50 (result is not in range -128...127).

b) What is the use of Interrupt vector table of 8086 microprocessor? (2 marks

Solution
The interrupt vector table contains 256 four byte entries, containing the CS:IP

interrupt vectors for each of the 256 possible interrupts. The table is used to locate

the interrupt service routine addresses for each of those interrupts.

c) What is an instruction queue? Explain? (1 mark)

Solution
This is introduced in 8086 processor.This queue is in the BIU and is used for storing

the predecoded instructions.This will overlap the fetching and execution cycle.

The EU will take the instructions from the queue for decoding and execution.

Question 3 This question is attributed with 4 marks, if answered properly.

The answer for this question as the following:

Write instruction(s) to perform the following tasks:

1) Multiply AX by 5
MOV CX, 5

MUL CX

2)
Three different instructions that will

clear the contents of register CL

1) MOV CL, 0H

2) XOR CL, CL

3) SUB, CL, CL

3)
Jump to label 'HELP' if AX is

negative

TEST AX, 8000H

JNZ HELP

4)

sets (1) the right most five bits of DI

without changing the remaining

bits of DI.

OR DI,001FH

Question 4 This question is attributed with 6 marks, if answered properly.

The complete code for this question as the following:

a) (3 marks)

Solution
We can count elements of the BW array as follows:

 . . . BW-6 BW-4 BW-2

AW DW 000Ah, 010Ah, 020Ah, 030Ah, 040Ah

 BW BW+2 BW+4 BW+6

BW DW 000Bh, 010Bh, 020Bh, 030Bh

 BW+8 BW+10 BW+12 . . .

CW DW 000Ch, 010Ch, 020Ch, 030Ch, 040Ch, 050Ch

The following array references have the results given:

 mov ax, [BW + 2] ; ax = 010Bh

 mov ax, [AW + 20] ; ax = 010Ch

 mov ax, [BW – 4] ; ax = 030Ah

mov ax, 1234h

 xchg ah, al ; ax =3412

MOV BX, B372h

MOVZX EAX, BX ; EAX=0000B372h

MOV BX, B372h

MOVSX DX, BL ; DX=0072h

b) (3 marks)

Solution
mov esi, OFFSET Arr_Bytes

mov al, [esi] ; a. AL = ----FFh -------

mov al, [esi+3] ; b. AL = ------3Dh -----

mov esi, OFFSET Arr_Words + 2

mov ax, [esi] ; c. AX = ------003Bh -----

mov edi, 8

mov edx, [Arr_DoubleWords + edi] ; d. EDX = -----3------

mov edx, Arr_DoubleWords[edi] ; e. EDX = ------3------

mov ebx, Ptr_DoubleWords

mov eax, [ebx+4] ; f. EAX = ------2-----

Question 5 This question is attributed with 5 marks, if answered properly.

The answer for this question as the following:

Solution
Title string operation

.model small

.stack 100h

 .data

String db "exercise",0

Length db ($-String) -1

Ans db ? (1 mark)

.code

Main proc

MOV AX, @data

MOV DS, AX

MOV AL,00H

MOV SI, offset String

MOV CX, Length (1 mark)

Back: MOV BH, [SI]

CMP BH, 'e'

JNZ Label

INC AL

Label: INC SI

LOOP Back

MOV Ans, AL

MOV AH, 4CH

INT 21H

Main endp

End Main (3 marks)

Question 6 This question is attributed with 3 marks, if answered properly.

The answer for this question as the following:

Solution
mov ax, A

cmp ax, B

jne DoIF

mov ax, X

cmp ax, Y

jng EndOfIf

mov ax, Z

cmp ax, T

jnl EndOfIf

; THEN Block:

DoIf: mov ax, D

mov C, ax

; End of IF statement

EndOfIF:

Question 7 This question is attributed with 6 marks, if answered properly.

The answer for t his question as the following:

Solution
Title ArraysOperations

.model small

.data

 InputArr db 1,2,3,1,3,5,6,3,4,5

 OddArr db 10 dup(?)

 EvenArr db 10 dup(?)

 OddAdd db 0

 EvenAdd db 0

.code

 Main PROC

 mov ax,@data

 mov ds,ax

 LEA BX,InputArr

 LEA SI,OddArr

 LEA DI,EvenArr

 mov cx,10

 mov dh,02 (2 marks)

 L1:

 mov ah,00

 mov al,[BX]

 mov dl,al

 div dh

 cmp ah,00 (1 mark)

 je EVEN1

 mov [DI],dl

 add OddAdd,dl

 INC DI

 INC BX

 Loop L1

 jmp CAL (1 mark)

 EVEN1:

 mov [SI],dl

 add EvenAdd,dl

 INC SI

 INC BX

 Loop L1 (1 mark)

 CAL:

 mov ax,0000

 mov bx,0000

 mov al,OddAdd

 mov bl,EvenAdd

 mov ax,4C00h

 int 21h

Main endp

End Main (1 mark)

