
 Philadelphia University

Faculty of Engineering

Marking Scheme

Examination Paper

DDeeppaarrttmmeenntt ooff CCEE

Module: Microprocessors (630313)

 Final Exam Second Semester Date: 01/06/2019

Section 1

 Weighting 40% of the module total

Lecturer: Dr. Qadri Hamarsheh

Coordinator: Dr. Qadri Hamarsheh

Internal Examiner: Dr. Naser Halasa

Marking Scheme

Microprocessors (630313)
The presented exam questions are organized to overcome course material, the exam contains 5 questions; all

questions are compulsory requested to be answered. Thus, the student is permitted to answer any question out

of the existing ones in this section.

Marking Assignments
The following scheme shows the marks assignments for each question. They show also the steps for which a

student can get marks along the related procedure he/she achieves.

Question 1This question is attributed with 10 marks if answered properly
The answer for this question as the following:

1) Which microprocessor accepts the program written for 8086 without any changes?

a) 8085 b) . 8087

c) 8088 d) None of the above

2) One of the following is not a valid segment address

a) 00000 b) E0840

c) 8CE90 d) 8CE91

3) Which group of instructions do not affect the flags?
a) Arithmetic operations b) Branch operations

c) Logic operations d) Data transfer operations

4) Which of the following will generate assembly error?

a) var1 BYTE 1101b, 22, 35

b) var3 BYTE '$','98778',

c) var2 BYTE "ABCDE", 18

d) None of the above

5) In the following data definition, assume that X2 begins at offset 4000h. What is the offset of the third

value (66)?

X2 DWORD 37, 49, 51, 66, 77

a) 4004h b) 4008

c) 400A d) 400C

6) _____________ can be used as indexed registers in real addressing mode.

a) BX, SI, DI

b) SI, DI, , DS

c) AX, SI, DI

d) AX, BX, CX

7) Which of the following is an illegal 8086 instruction?

a) add ax, [si] b) dec [si]

c) mov ax, [si] d) aDd bx, [si]

8) From hardware viewpoint, the overflow flag (OF) can be implemented using the following logic

expression:
a) OF = CF AND MSB

b) OF = CF OR MSB

c) OF = CF XOR MSB

d) None of the above

9) Assume that the AX register contains the value 6521 H. What will be the contents of AX after execution

the instruction:
CMP AL, AH

a) 65BC H b) BC21 H

c) 4421 H d) 6521 H

10) What will be the final value of ax?

mov ax, 6

mov ecx, 4

L1:

inc ax

loop L1

a) 11 b) 10

c) 9 d) None of the above

Question 2 This question is attributed with 10 marks if answered properly

a) (1.5 marks)

Term Description

Virtual memory:
A way of access to unlimited memory by

swapping data between disk storage and

RAM.

Real mode
faster operation with maximum of 1 Mbytes

of memory

Protected mode
mode is slower but can use 16 Mbytes of

memory

b) (2.5 marks)

Solution

DWORD: It defines word type variable. The defined variable may have one or more initial

values in the directive statement. If there is one value, two bytes of memory space are

reserved. The general format is Name of variable DW Initial value or values.

X DWORD 1,2,3,4
OFFSET: It is an operator to determine the offset (displacement) of a variable or procedure

with respect to the base of the segment which contains the named variable or procedure. The

operator can be used to load a register with the offset of a variable.

X DWORD 1,2,3,4

Mov esi, offset x
ENDP: (End Procedure) It informs assembler the end of a procedure. In assembly language

programming, subroutines are called procedures. A procedure may be an independent

program module to give certain result or the required value to the calling program. This

directive is used together with PROC directive to enclose procedure. The general format of

ENDP directive is:

ProcedureName ENDP
EQU:

The EQU directive associates a symbolic name with an integer expression or some arbitrary

text.

There are three formats:

name EQU expression

Rate EQU 7

Mov Ax, Rate

Cannot be redefined
SIZEOF - returns number of bytes used by an array initializer

LENGTHOF * TYPE

data

intArray WORD 32 DUP(0)

.code

mov eax,SIZEOF intArray ; returns 64 = 32 * 2

c) (3.5 marks)

Solution
1. TINY MODEL (.MODEL TINY):

 The model uses maximum of 64K bytes for Code and Data.

2. SMALL MODEL (.MODEL SMALL):

 The model uses maximum of 64K bytes for Code and 64K bytes for Data

(Code<=64K and Data <=64K).

 This model is the most widely used memory model and is sufficient for all the

programs to be used in this course.

3. MEDIUM MODEL, (.MODEL MEDIUM):

 The model uses maximum of 64K bytes for Data and Code can exceed 64K bytes

(Code>64K and Data <=64K).

4. COMPACT MODEL, (.MODEL COMPACT):

 The model uses maximum of 64K bytes for Code and Data can exceed 64K bytes

(Code<=64K and Data >64K).

5. LARGE MODEL, (.MODEL LARGE):

 Both Code and Data can exceed 64K bytes. However no single data set (i.e.

array) can exceed 64K bytes (Code>64K and Data >64K).

6. HUGE MODEL, (.MODEL HUGE):

 Both Code and Data can exceed 64K bytes. Additionally, a single data set (i.e.

array) can exceed 64K bytes (Code>64K and Data >64K).

7. FLAT MODEL, (.MODEL FLAT)

 Window NT Application

Attributes of Memory Models

d) (2.5 marks)

Solution

Software Interrupt - Internal - from int or into

 The INT instruction executes a software interrupt.

 The code that handles the interrupt is called an interrupt handler.

 The Interrupt Vector Table (IVT) holds a 32-bit segment-offset address for each

possible interrupt handler.

 Interrupt Service Routine (ISR) is another name for interrupt handler.

Hardware Interrupt - External Uses INTR and NMI

 Generated by the Intel 8259 Programmable Interrupt Contoller (PIC)

o in response to a hardware signal

Interrupt Control Instructions

 STI – set interrupt flag

 CLI – clear interrupt flag

Question 3 This question is attributed with 10 marks, if answered properly.

The answer for this question as the following:

a) (2 marks)

Ñ Instruction Answer

1) CMP AL, GOAL V

2) Sub SS, MailSize I

3) MOV [1234H] ,AX V

4) xchg Goal, Name I

b) (2 marks)

Solution

CF = 1, SF = 0, ZF = 1, OF = 0

CF = 0, SF = 1, ZF = 0, OF = 1

CF = 0, SF = 1, ZF = 0, OF = 0

c) (2 marks)

Solution
AL = 40h

AX = 200h

EAX = 20000h

edx = 50000h

d) (2 marks)

Solution

SUM =10

e) (2 marks)

Solution

0001H
0001H
0003H

0001H

Question 4 This question is attributed with 4 marks, if answered properly.

The complete code for this question as the following:

Solution

TITLE Calculation of different equations Cal.asm

.MODEL Tiny

.Data

Y sword ?

X1 sword ?

X2 sword ?

Z word ?

X3 word ?

X4 word ?

C = 200; (1 mark)

.Code

Main PROC

mov ax, @Data

mov ds, ax ; (1 mark)

; Initialize variables X1=FFh, X2=-10, X3=555, X4 =100.

mov X1, 0FFh

mov X2, -10

mov X3, 555

mov X4, 100; (1 mark)

; Compute Y := X1+X2-C and Z := X3+X4

mov ax, X1

add ax, X2

sub ax, C

mov Y, ax

mov ax, X3

add ax, X4

mov Z, ax ; (1 mark)

Main ENDP

END Main

Question 5 This question is attributed with 6 marks, if answered properly.

The answer for this question as the following:

Solution

Title Compare.asm

.Model flat, stdcall

.Stack 1024

strsize = 100

.Data

 str1 Byte "enter first string ", 0

 str2 Byte "enter second string ", 0

 instr1 Byte strsize dup("0")

 instr2 Byte strsize dup("0")

 msg1 Byte "string are equal”

 msg2 Byte "strings are not equals"

main PROC

.Code

 mov esi, offset instr1

 mov edi, offset instr2 (1.5 marks)

; get string

 mov edx, offset str1

 call writestring

 mov edx, offset instr1

 mov ecx, strsize

 call readstring

 mov edx, offset str2

 call writestring

 mov edx, offset instr2

 mov ecx, strsize

 call readstring (1.5 marks)

; string comparision

 mov ecx, strsize

 L1: mov bl, byte ptr [esi]

 cmp byte ptr [edi], bl

 jne L2

 inc esi

 inc edi

 loop L1

 mov edx, msg1

 call writestring

 jmp L3

 L2: edx, msg2

 call writestring

 L3: call crlf

exit

main ENDP

END main (3 marks)

