Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of Communication \& Electronics Engineering

Probability and Random Variables

Second Quiz
First semester
Date: 09/12/2019
Section 1
Weighting 6% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Omar Daoud

Marking Scheme
 Probability and Random Variables (650364)

The presented quiz questions are organized to overcome course material through 1 question.

Marking Assignments

Question 1: This question is attributed with 6 marks if answered properly,

Solution

a) The total probability is given by

$$
\begin{aligned}
\int_{x=2}^{6} \int_{y=0}^{5} c(2 x+y) d x d y & =\left.\int_{x=2}^{6} c\left(2 x y+\frac{y^{2}}{2}\right)\right|_{0} ^{5} d x \\
& =\int_{x=2}^{6} c\left(10 x+\frac{25}{2}\right) d x=210 c
\end{aligned}
$$

For this to equal 1, we must have $\boldsymbol{c}=\mathbf{1} / \mathbf{2 1 0}$.
b) The marginal distribution function for \boldsymbol{X} is
(1.5 marks)

c) The marginal density function for \boldsymbol{X} is, from part (b)
(1.5 marks)

$$
f_{1}(x)=\frac{d}{d x} F_{1}(x)= \begin{cases}(4 x+5) / 84 & 2<x<6 \\ 0 & \text { otherwise }\end{cases}
$$

d)
(1.5 marks)

$$
P(3<X<4, Y>2)=\frac{1}{210} \int_{x=3}^{4} \int_{y=2}^{5}(2 x+y) d x d y=\frac{3}{20}
$$

