

Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper

Department of Communication & Electronics Engineering

Probability and Random Variables

Third Quiz

First semester

Date: 08/01/2020

Section 1

Weighting 6% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Omar Daoud

Marking Scheme Probability and Random Variables (650364)

The presented quiz questions are organized to overcome course material through 1 question. <u>Marking Assignments</u>

Question 1: This question is attributed with 5 marks if answered properly,

For these random variables the conditional density of
$$X$$
 given $Y = y$ is

$$f(x|y) = \begin{cases} \frac{2x+4y}{1+4y} & \text{for } 0 < x < 1\\ 0 & \text{elsewhere} \end{cases}$$
So that

$$f\left(x\Big|\frac{1}{2}\right) = \begin{cases} \frac{2}{3}(x+1) & \text{for } 0 < x < 1\\ 0 & \text{elsewhere} \end{cases}$$
Thus, $\mu_{X|Y_2}$ is given by

$$E\left(x\Big|\frac{1}{2}\right) = \int_0^1 \frac{2}{3}x(x+1) \, dx \\ = \frac{5}{9} \end{cases}$$
Next, we find

$$E\left(x^2\Big|\frac{1}{2}\right) = \int_0^1 \frac{2}{3}x^2(x+1) \, dx \\ = \frac{5}{718} \end{cases}$$
and it follows that

$$\int \sigma_{X|\frac{1}{2}}^2 = \frac{7}{18} - \left(\frac{5}{9}\right)^2 = \frac{13}{162}$$