Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of Communication \& Electronics Engineering

Probability and Random Variables

Third Quiz

First semester
Date: 08/01/2020
Section 1
Weighting 6% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Omar Daoud

Marking Scheme
 Probability and Random Variables (650364)

The presented quiz questions are organized to overcome course material through 1 question.
Marking Assignments
Question 1: This question is attributed with 5 marks if answered properly,

Solution

For these random variables the conditional density of X given $Y=y$ is

$$
f(x \mid y)= \begin{cases}\frac{2 x+4 y}{1+4 y} & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

So that

$$
f\left(x \left\lvert\, \frac{1}{2}\right.\right)= \begin{cases}\frac{2}{3}(x+1) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Thus, $\boldsymbol{\mu}_{\left.X\right|^{1 / 2}}$ is given by

$$
\begin{aligned}
E\left(x \left\lvert\, \frac{1}{2}\right.\right) & =\int_{0}^{1} \frac{2}{3} x(x+1) d x \\
& =\frac{5}{9}
\end{aligned}
$$

Next, we find

$$
\begin{aligned}
E\left(x^{2} \left\lvert\, \frac{1}{2}\right.\right) & =\int_{0}^{1} \frac{2}{3} x^{2}(x+1) d x \\
& =\frac{7}{18}
\end{aligned}
$$

and it follows that

$$
\sigma_{X \left\lvert\, \frac{1}{2}\right.}^{2}=\frac{7}{18}-\left(\frac{5}{9}\right)^{2}=\frac{13}{162}
$$

