

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Neural Networks and Fuzzy Logic (630514)

Second Exam

First semester

Date: 27/12/2015

Section 1

Weighting 20% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Mohammed Mahdi

Marking Scheme Neural Networks and Fuzzy Logic (630514)

The presented exam questions are organized to overcome course material through 4 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 7 marks if answered properly; the answers are as following:

- 1) Which of the following equations is the best description of the **Perceptron Learning Rule**? a) $\Delta W_k = \eta y_k X$
 - **b)** $\Delta W_k = \eta (X W_k)$

c)
$$\Delta W_k = \eta (d_k - y_k) X$$

d)
$$\Delta W_j = \eta_j (X - W_j)$$
, where $\eta_j < \eta$ and $j \neq k$

Where X is the input vector, η is the learning rate, W_k is the weight vector, d_k is the target output, and y_k is the actual output for unit k.

2) In the backpropagation algorithm, how is the **error function** usually defined?

a)
$$\frac{1}{2} \sum_{j} (weight_j \times input_j)$$
 for all inputs j
b) $\frac{1}{2} \sum_{j} (target_j - output_j)^2$ for all outputs j
c) $\frac{1}{2} \sum_{j} (target_j - output_j)$ for all outputs j
d) None of above

a) 45 **b)** 90

4) Give the **equation** that can be used to convert the unipolar binary data (**x**) to bipolar binary data (**y**).

- $a) \quad y = 2x$
- c) y = 2x + 1

b) y = -2x - 1**d)** y = 2x - 1

Auto-associative memory

Double associative memory

5) If the associated pattern pairs (x, y) are different and if the model recalls a y given an x or vice versa, then it is termed as

b)

d)

- a) Auto correlator
- c) Heteroassociative memory
- 6) An advantage with **gradient descent** based methods, such as back propagation, is that they cannot get stuck in local minima.
- a) True
 b) False
 7) The second stage of back propagation training is _________
 a) initialization weights
 b) back propagation of errors
 c) feed forward
 d) updating of weights and bias

Question 2 This question is attributed with 3 marks if answered properly; the answers are as following:
Solution Calculate the weight matrix from the reference vectors, using the following rule.
$W = p_{1} (p_{1})^{T} + p_{2} (p_{2})^{T} - MI =$
$\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 &$
$\begin{bmatrix} 2 & 0 & 0 & -2 \\ 0 & 2 & -2 & 0 \\ 0 & -2 & 2 & 0 \\ -2 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -2 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & 0 & 0 \\ -2 & 0 & 0 & 0 \end{bmatrix}$ Question 3 This question is attributed with 4 marks if answered properly; the answers are as following:
<u>Solution</u> This question is attributed with 4 marks if answered property; the answers are as following:
 Bidirectional associative memory training algorithm: 1) Storage (learning): In the learning step for BAM we need to find weight matrix between, M pairs of patterns (fundamental memories) are stored in the synaptic weights of the network according to the equation:
$W = \sum_{m=1}^{M} X_{m} Y_{m}^{T}$
 2) Testing We need to confirm that the BAM is able to recall Y_m when presented X_m. recall X_m when presented Y_m Using Y = sign (W^TX) = m = 1.2 M
$Y_{m} = sign (W^{T}X_{m}), \qquad m = 1, 2,, M$ And using $X_{m} = sign (WY_{m}), \qquad m = 1, 2,, M$
$\mathbf{A}_{m} = \operatorname{Sign}(\mathbf{W} \mathbf{I}_{m}), \qquad \mathbf{M} = \mathbf{I}, \mathbf{Z}, \dots, \mathbf{M}$ 3) Retrieval
• Present an unknown vector (probe) X (corrupted or incomplete version of a pattern from set A or B) to the BAM and retrieve a stored association: $X \neq X_m, m = 1, 2,, M$
• Initialize the BAM:
X(0) = X, p = 0 • Calculate the BAM output at iteration p:
$Y(\mathbf{p}) = \text{sign}[W^{T}X(\mathbf{p})]$
\circ Update the input vector $X(p)$:
X(p + 1) = sign[WY(p)] \circ Repeat the iteration until convergence, when input and output remain unchanged.
Question 4 This question is attributed with 6 marks if answered properly; the answers are as following:
Solution
a) Step 1: Begin training.
Step 2: For the first vector, (1, 1, 0, 0), do Steps 3-5. Step 3:
$D(1) = (2 - 1)^2 + (6 - 1)^2$

 $D(1) = (.2 - 1)^2 + (.6 - 1)^2$ + $(.5 - 0)^2$ + $(.9 - 0)^2$ = 1.86; $D(2) = (.8 - 1)^2 + (.4 - 1)^2$ + $(.7 - 0)^2$ + $(.3 - 0)^2$ = 0.98.

Step 4: The input vector is closest to output node 2, so

figure, plotsompos(net, datal)