Marking Scheme

Exam Paper
BSc CE

Neural Networks and Fuzzy Logic (630514)

Second Exam First semester Date: 27/12/2015
Section 1
Weighting 20% of the module total

Lecturer: Dr. Qadri Hamarsheh
Coordinator: Dr. Qadri Hamarsheh
Internal Examiner: Dr. Mohammed Mahdi
The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 7 marks if answered properly; the answers are as following:

1) Which of the following equations is the best description of the *Perceptron Learning Rule*?
 - **a)** \(\Delta W_k = \eta y_k x \)
 - **b)** \(\Delta W_k = \eta (x - W_k) \)
 - **c)** \(\Delta W_k = \eta (d_k - y_k)x \)
 - **d)** \(\Delta W_j = \eta_j (x - W_j) \), where \(\eta_j < \eta \) and \(j \neq k \)

Where \(x \) is the input vector, \(\eta \) is the learning rate, \(W_k \) is the weight vector, \(d_k \) is the target output, and \(y_k \) is the actual output for unit \(k \).

2) In the backpropagation algorithm, how is the *error function* usually defined?
 - **a)** \(\frac{1}{2} \sum_j (\text{weight}_j \times \text{input}_j) \) for all inputs \(j \)
 - **b)** \(\frac{1}{2} \sum_j (\text{target}_j - \text{output}_j)^2 \) for all outputs \(j \)
 - **c)** \(\frac{1}{2} \sum_j (\text{target}_j - \text{output}_j) \) for all outputs \(j \)
 - **d)** *None of above*

3) A Hopfield network has 10 neurons. How many *adjustable parameters* does this network contain?
 - **a)** 45
 - **b)** 90
 - **c)** 100
 - **d)** 1024

4) Give the *equation* that can be used to convert the unipolar binary data \((x) \) to bipolar binary data \((y) \).
 - **a)** \(y = 2x \)
 - **b)** \(y = -2x - 1 \)
 - **c)** \(y = 2x + 1 \)
 - **d)** \(y = 2x - 1 \)

5) If the associated pattern pairs \((x, y) \) are different and if the model recalls a \(y \) given an \(x \) or vice versa, then it is termed as
 - **a)** *Auto correlator*
 - **b)** Auto-associative memory
 - **c)** *Heteroassociative memory*
 - **d)** Double associative memory

6) An advantage with *gradient descent* based methods, such as back propagation, is that they cannot get stuck in local minima.
 - **a)** True
 - **b)** False

7) The second stage of back propagation training is ____________
 - **a)** initialization weights
 - **b)** back propagation of errors
 - **c)** feed forward
 - **d)** updating of weights and bias
Question 2 This question is attributed with 3 marks if answered properly; the answers are as following:

Solution

Calculate the weight matrix from the reference vectors, using the following rule.

\[W = p_1(p_1)^T + p_2(p_2)^T - MI = \]

\[
\begin{bmatrix}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
\end{bmatrix}
+
\begin{bmatrix}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
\end{bmatrix}
- 2 \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
= \]

\[
\begin{bmatrix}
2 & 0 & 0 & -2 \\
0 & 2 & -2 & 0 \\
0 & -2 & 2 & 0 \\
-2 & 0 & 0 & 2 \\
\end{bmatrix}
- \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
\end{bmatrix}
\]

Question 3 This question is attributed with 4 marks if answered properly; the answers are as following:

Solution

Bidirectional associative memory training algorithm:

1) **Storage (learning):** In the learning step for BAM we need to find weight matrix between, \(M \) pairs of patterns (fundamental memories) are stored in the synaptic weights of the network according to the equation:

\[W = \sum_{m=1}^{M} X_m Y_m^T \]

2) **Testing**
 - We need to confirm that the BAM is able to
 - recall \(Y_m \) when presented \(X_m \).
 - recall \(X_m \) when presented \(Y_m \).

 Using
 \[Y_m = \text{sign}(W^T X_m), \quad m = 1.2,...,M \]
 And using
 \[X_m = \text{sign}(W Y_m), \quad m = 1.2,...,M \]

3) **Retrieval**
 - Present an unknown vector (probe) \(X \) (corrupted or incomplete version of a pattern from set A or B) to the BAM and retrieve a stored association:

 \[X \neq X_m, \quad m = 1,2,...,M \]

 - **Initialize the BAM:**
 \[X(0) = X, \quad p = 0 \]

 - **Calculate the BAM output at iteration \(p \):**
 \[Y(p) = \text{sign}[W^T X(p)] \]

 - **Update the input vector \(X(p) \):**
 \[X(p + 1) = \text{sign}[W Y(p)] \]

 - Repeat the iteration until convergence, when input and output remain unchanged.

Question 4 This question is attributed with 6 marks if answered properly; the answers are as following:

Solution

a) **Step 1: Begin training.**
 Step 2: For the first vector, \((1, 1, 0, 0)\), do Steps 3-5.

Step 3:

\[D(1) = (.2 - 1)^2 + (.6 - 1)^2 + (.5 - 0)^2 + (.9 - 0)^2 = 1.86; \]
\[D(2) = (.8 - 1)^2 + (.4 - 1)^2 + (.7 - 0)^2 + (.3 - 0)^2 = 0.98. \]

Step 4: The input vector is closest to output node 2, so
Step 5: The weights on the winning unit are updated:

\[
\begin{align*}
 w_{i2}^{\text{new}} &= w_{i2}^{\text{old}} + 0.6 \left[x_i - w_{i2}^{\text{old}} \right] \\
 &= 0.4 w_{i2}^{\text{old}} + 0.6 x_i.
\end{align*}
\]

This gives the weight matrix

\[
\begin{bmatrix}
 0.2 & 0.92 \\
 0.6 & 0.76 \\
 0.5 & 0.28 \\
 0.9 & 0.12
\end{bmatrix}
\]

b) %Load the data
\[
data1 = [1, 1, 0; 0, 0, 1; 1, 0, 0; 0, 0, 1]';
\]
% Create a Self-Organizing Map
\[
dimension1 = 1;
dimension2 = 2;
net = selforgmap ([dimension1 dimension2]);
\]
% Train the Network
\[
[net, tr] = train (net, data1);
y = net (data1);
\]
% View the Network
\[
view (net)
\]
% Plot results using different SOM plots
\[
figure, plotsomtop (net)
figure, plotsomnc (net)
figure, plotsomnd (net)
figure, plotsomplanes (net)
figure, plotsomhits (net, data1)
figure, plotsompos (net, data1)
\]