Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Neural Networks and Fuzzy Logic (630514)

Second Exam

Summer semester
Date: 16/08/2017
Section 1
Weighting 20% of the module total

Lecturer:	Dr. Qadri Hamarsheh
Coordinator:	Dr. Qadri Hamarsheh
Internal Examiner:	Dr. Mohammed Mahdi

Marking Scheme
 Neural Networks and Fuzzy Logic (630514)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 8 marks if answered properly; the answers are as following:

1) Input units of a Neural Network can be adjusted during a learning process.
a) True
b) False
2) State whether Hebb's law is supervised learning or unsupervised type?
a) Supervised
b) Unsupervised
c) Either supervised or unsupervised
d) Can be both supervised and unsupervised
3) In Hebbian learning, the initial weights are set?
a)
To zero
b) Random
c) Near to target value
d) None of the above
4) In a three layer network, shape of dividing surface (decision boundary) is determined by?
a) Number of units in second layer
b) Number of units in third layer
c) Number of units in second and third layer
d) None of the mentioned
5) What is the biggest difference between Widrow \& Hoff's Delta Rule and the Perceptron Learning Rule for learning in a single-layer feedforward network?
a) There is no difference.
b) The Delta Rule is defined for step activation functions, but the Perceptron Learning Rule is defined for linear activation functions.
c) The Delta Rule is defined for sigmoid activation functions, but the Perceptron Learning Rule is defined for linear activation functions.
d)

The Delta Rule is defined for linear activation functions, but the Perceptron Learning Rule is defined for step activation functions.
6) What is gradient descent?
a) Method to find the absolute minimum of a function
b) Method to find the absolute maximum of a function
c) Maximum or minimum, depends on the situation
d) None of the mentioned
7) The number of fundamental memories $\mathbf{M}_{\text {max }}$ (Most perfectly retrieved) that can be stored in the \mathbf{n}-neuron Hopfield network is limited by
a) $\quad M_{\max }=0.15 n$
b) $\quad M_{\max }=\frac{n}{4 \ln n}$
c)
$M_{\max }=\frac{n}{2 \ln n}$
d) None of above
8) What is asynchronous update in a network?
a) Update to all units is done at the same time
b) Change in state of any number of units drive the whole network
c) Change in state of any one unit drive the whole network
d) None of the mentioned

Question 2 This question is attributed with 4 marks if answered properly; the answers are as following:

Solution

Step 1: Initialization

Set initial weights $w_{1}, w_{2}, \ldots, w_{n}$ and threshold θ to random numbers in the range $[-0.5$, 0.5].

Step 2: Activation
Activate the perceptron by applying inputs $x_{1}(p), x_{2}(p), \ldots, x_{n}(p)$ and desired output $Y_{d}(p)$. Calculate the actual output at iteration $p=1$

Where n is the number of the perceptron inputs, and step is a step activation function. Step 3: Weight training
Update the weights of the perceptron

$$
\omega_{i}(D+1)=\omega_{i}(D)+\Delta \omega_{i}(D)
$$

where $\Delta w_{i}(p)$ is the weight correction at iteration p.

The weight correction is computed by the delta rule:
Step 4: Iteration
Increase iteration p by one, go back to Step 2 and repeat the process until convergence.
Question 3 This question is attributed with 5 marks if answered properly; the answers are as following:

Solution

a) Forward Pass

Input to top neuron $=(0.1 \times 0.1)+(0.7 \times 0.5)=0.36$. Out $=0.589$.
Input to bottom neuron $=(0.1 \times 0.3)+(0.7 \times 0.2)=0.17$. Out $=0.5424$.
Input to final neuron $=(0.589 \times 0.2)+(0.5424 \times 0.1)=0.17204$. Out $=0.5429$.
b) Reverse Pass

Output error $\delta=(t-o)(1-0) \mathrm{o}=(1-0.5429)(1-0.5429) 0.5429=0.11343$.
New weights for output layer
$\mathbf{w l}(+)=\mathbf{w l}+(\delta \times$ input $)=0.2+(0.11343 \times 0.589)=0.2668$.
$\mathrm{w} 2(+)=\mathrm{w} 2+(\delta \times$ input $)=0.1+(0.11343 \times 0.5424)=0.16152$.

Errors for hidden layers:

$\delta \mathrm{l}=\delta \mathbf{x w l}=0.11343 \times 0.2668=0.030263(\mathbf{x}(1-0) 0)=0.007326$.
$\delta \mathbf{2}=\delta \mathbf{x w 2}=0.11343 \times 0.16152=0.018321(\mathbf{x}(1-0) 0)=0.004547$.
New hidden layer weights:
$\mathrm{w} 3(+)=0.1+(0.007326 \times 0.1)=0.1007326$.
$w 4(+)=0.5+(0.007326 \times 0.7)=0.505128$.
$\mathbf{w} 5(+)=0.3+(0.004547 \times 0.1)=0.3004547$.
$\mathrm{w} 6(+)=0.2+(0.004547 \times 0.7)=0.20318$.
Question 4 This question is attributed with 3 marks if answered properly; the answers are as following: (a) AND (x) Solution

$$
\begin{aligned}
& \left.W=x_{1} x_{1}^{T}+x_{2} x_{2}^{T}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right]\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]-1\right] \\
& W=\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]+\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & -2 & 2 \\
-2 & 2 & 2 & -2 \\
-2 & 2 & 2 & -2 \\
2 & -2 & -2 & 2
\end{array}\right]
\end{aligned}
$$

Since we demand that all wii $=0$, we get:

$$
W=\left[\begin{array}{cccc}
0 & -2 & -2 & 2 \\
-2 & 0 & 2 & -2 \\
-2 & 2 & 0 & -2 \\
2 & -2 & -2 & 0
\end{array}\right]
$$

