Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

First semester

Date 23/12/2018
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Eng. Anis Nazer

Marking Scheme

Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 Multiple Choice

(6 marks)

1) The Boolean function \mathbf{F} with don't-care conditions are represented in the K-map for four-variables as shown below, the simplification of the function F in sum-of-products form is:
a) $\bar{A} D+\bar{A} B+B D+\bar{C} D$
b) $\bar{A} D+\bar{A} B+\bar{C} D+A \bar{B} \bar{C} D$
c) $\bar{A} D+B D+\bar{C} D$
d) $\bar{A} \bar{B} D+\bar{A} B+B D+A \bar{B} \bar{C} D$

$A B C D$	00	01	11	10
$\mathbf{0 0}$	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$
	\mathbf{X}	1	1	\mathbf{x}
$\mathbf{1 1}$	\mathbf{x}	\mathbf{x}	1	$\mathbf{0}$
$\mathbf{1 0}$	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{0}$

2) The simplified expression of half adder carry is
a) $c=x y+x$
b) $\quad c=x y$
c) $\mathbf{c}=\mathbf{x y}+\mathbf{y}$
d) $\mathbf{c}=\mathbf{y}+\mathbf{x}$
3) How many select lines will a $\mathbf{1 6}$ to \mathbf{l} multiplexer will have:
a) 4
b) 3
c) 5
d) 6
4) Decoder with enable input can be used as:
a) Encoder
b) Multiplexer
c) XOR
d) Demultiplexer
5) The following circuit is a

a) 2-4 decoder with active low enable and active low outputs
b) 2-4 decoder with active low enable and active high outputs
c) 2-4 decoder with active high enable and active low outputs
d) 2-4 decoder with active high enable and active high outputs
6) The logic realized by the circuit shown in figure is

a) $\quad \mathbf{F}=\mathbf{B} \oplus \mathbf{C}$
b) $\quad \mathbf{F}=\overline{\mathbf{B} \oplus \mathbf{C}}$
c) $\quad \mathrm{F}=\mathrm{A} \oplus \mathbf{C}$
d) $\mathbf{F}=\overline{\mathbf{A} \oplus \mathbf{C}}$

b)
(2.5 marks)

Solution

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2^{n} (or fewer) input lines and n output lines.

Inputs								Outputs		
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	X	\boldsymbol{Y}	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1
$\begin{aligned} & X=D_{4}+D_{5}+D_{6}+D_{7} \\ & Y=D_{2}+D_{3}+D_{6}+D_{7} \\ & Z=D_{1}+D_{3}+D_{5}+D_{7} \end{aligned}$										

b)

Question 4:

