Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

Second Exam First semester Date 23/12/2018
Section 1
Weighting 20% of the module total

Lecturer: Dr. Qadri Hamarsheh
Coordinator: Dr. Qadri Hamarsheh
Internal Examiner: Eng. Anis Nazer
Marking Scheme
Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 Multiple Choice

1) The Boolean function F with don't-care conditions are represented in the K-map for four-variables as shown below, the simplification of the function F in sum-of-products form is:

 a) $\overline{A}D + \overline{A}B + BD + \overline{C}D$
 b) $A\overline{D} + \overline{A}B + \overline{C}D + AB\overline{C}D$
 c) $AD + BD + CD$
 d) $\overline{A}BD + \overline{A}B + BD + AB\overline{C}D$

2) The simplified expression of half adder carry is
 a) $c = xy + x$
 b) $c = xy$
 c) $c = xy + y$
 d) $c = y + x$

3) How many select lines will a 16 to 1 multiplexer will have:
 a) 4
 b) 3
 c) 5
 d) 6

4) Decoder with enable input can be used as:
 a) Encoder
 b) Multiplexer
 c) XOR
 d) Demultiplexer

5) The following circuit is a __________.

 a) 2-4 decoder with active low enable and active low outputs
 b) 2-4 decoder with active low enable and active high outputs
 c) 2-4 decoder with active high enable and active low outputs
 d) 2-4 decoder with active high enable and active high outputs

6) The logic realized by the circuit shown in figure is

 a) $F = B \oplus C$
 b) $F = B \oplus \overline{C}$
 c) $F = A \oplus C$
 d) $F = A \oplus \overline{C}$
An encoder is a digital circuit that performs the **inverse operation** of a decoder. An encoder has 2^n (or fewer) input lines and n output lines.

Solution

Inputs

<table>
<thead>
<tr>
<th>D_0</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
<th>D_5</th>
<th>D_6</th>
<th>D_7</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$X = D_4 + D_5 + D_6 + D_7$

$Y = D_2 + D_3 + D_6 + D_7$

$Z = D_1 + D_3 + D_5 + D_7$
Question 3:

a) Solution

\[F_1 = x'y'z' + xz(y + y') = x'y'z' + xyz + xy'z = \Sigma m(0, 5, 7) \]
\[F_2 = \Sigma m(2, 3, 4) \]
\[F_3 = \Sigma m(1, 6, 7) \]

b) Solution