Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

Second semester
Date 01/05/2019
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh

Dr. Qadri Hamarsheh
Dr. Naser Halasa

Marking Scheme Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 Multiple Choice

1) $\mathbf{B C D}$ to 7 segments is
a) encoder
b) mux
c) decoder
d) demux
2) To implement binary full adder using decoders we need:
a) 3-to-8 active high decoder with one AND logic gate
b) 3-to-8 active high decoder with two AND logic gates
c) 3-to-8 active high decoder with one OR logic gate
d) 3-to-8 active high decoder with two OR logic gates
3) The carry propagation in binary full adder can be expressed as \qquad .
a)
$\mathbf{C}_{\mathrm{p}}=\mathbf{A B}$
b) $\mathbf{C}_{\mathrm{p}}=\mathbf{A}+\mathbf{B}$
c) $\quad C_{p}=A \oplus B$
d) $\quad C_{p}=A \oplus \bar{B}$
4) Encoders 3×8 are made by three
a) AND gate
b) OR gate
c) XOR gate
d) NAND gate
5) If the input combination $\mathbf{S = 1}, \mathbf{R}=\mathbf{1}$ is applied to $\mathbf{N O R}$ Based $\mathbf{S R}$ Latch circuit, the (steady state) output will be:
a) $\quad Q=0, Q^{\prime}=0$
b) $\quad Q=0, Q^{\prime}=1$
c) $\quad Q=1, Q^{\prime}=0$
d) $\quad Q=1, Q^{\prime}=1$
6) Flip flop is:
a) level sensitive
b) Edge sensitive
c) Both of a and b
d) None of the above

Question 2:

The demultiplexer is a combinational logic circuit that performs the reverse operation of multiplexer (Several output lines, one input line).

Solution
Truth table

Question 4:

