

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Logic Circuits (630211)

Second Exam

Second semester

Date 01/05/2019

Section 1

Weighting 20% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Naser Halasa

Marking Scheme Logic Circuits (630211)

The pro	esented exam q	uestions a	re organized	d to overcome c	ourse	e material through 4 que	stions.	
The all	questions are	compulso	ry requested	to be answered	•			
Quarti	on 1 Multir	la Chaia		Marking Assi	gnme	ents	(6 mantra)	
$\frac{Quesus}{1}$	BCD to 7 sec	ments i	e s				(O marks)	
-,	a)	encode	אנ זי		h)	mux		
	a) c)	decode	7		d)	demux		
2)	To implement	binary f	ull adder	using decode r	∽, rs we	need.		
a) 3-to-8 active high decoder with one AND logic gate								
b) 3-to-8 active high decoder with two AND logic gates								
	c) 3-to-8 active high decoder with one OR logic gate							
d) 3-to-8 active high decoder with two OR logic gates								
3)	The carry pr	opagati	on in binary	full adder can	be ex	pressed as		
	a)	$\mathbf{C}_{p} = \mathbf{A}$	B		b)	$\mathbf{C}_{p} = \mathbf{A} + \mathbf{B}$		
	c)	$C_n = A$	$\oplus B$		d)	$C_n = A \oplus \overline{B}$		
4) Encoders 3x8 are made by three								
,	a)	AND q	ate		b)	OR gate		
	c)	XOR g	ate		d)	NAND gate		
5)	If the input co	mbination	S=1, R=1	is applied to N	OR I	Based SR Latch circuit,	the (steady state) outp	out
	will be:							
	a)	Q=0, Ç)'=0		b)	Q=0, Q'=1		
	C)	Q=1, Ç) '=0		d)	Q=1, Q'=1		
6)	6) Flip flop is:							
	a) level sensitive				b)	Edge sensitive		
c) Both of a and b					d)	None of the above		
Questi	on 2:						(3 marks)	
Solution								
The demultiplexer is a combinational logic circuit that performs the								
reverse operation of multiplexer (Several output lines, one input line).								
				Salaa	+ 1:	$S_1 S_0$		
					S	1		
						1 0		
						P_{0}^{I}		
			ut .	- 7	17	P. m		
					4-	P_{1}		
						P_{1}		
			~	D	eMl	JX S		
				$S_1 S_0 S_0$				
					_	$\longrightarrow P_0 = X$		
						$r_1 = X$		
			• • •	╅╁╞		$\rightarrow P_2 = X$		
			X			$\rightarrow P_3 = X$		
				Internal logi DE	c circ MUX	cuit for 1-4 K		

Question 3:

(6 marks)

Question 4: a)

b)

(5 marks)

Solution

 $F(w, x, y) = \overline{w}x + \overline{w}y + xy$