Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

Date 02/01/2020
Section 1
Weighting 20% of the module total

Lecturer:	Dr. Qadri Hamarsheh
Coordinator:	Dr. Qadri Hamarsheh
Internal Examiner:	Eng. Anis Nazer

Marking Scheme

Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions.
The all questions are compulsory requested to be answered.
Marking Assignments

Question 1: Multiple Choice

(5 marks)

1) The sum of ripple carry adder is
a) $\mathrm{S}_{i}=\mathrm{A}_{i} \oplus \mathrm{~B}_{i} \oplus \mathrm{C}_{i}$
b) $\mathbf{S}_{i}=\mathbf{A}_{i} \mathbf{B}_{i}+\mathrm{A}_{\boldsymbol{i}} \mathrm{C}_{\boldsymbol{i}}+\mathrm{B}_{\boldsymbol{i}} \mathrm{C}_{\boldsymbol{i}}$
c) $\quad \mathbf{S}_{i}=\mathrm{A}_{i}+\mathrm{B}_{i}+\mathrm{C}_{i}$
d) $\quad \mathrm{S}_{i}=\mathrm{A}_{i} \mathrm{~B}_{i} \mathrm{C}_{i}$
2) A BCD-to- $\mathbf{7}$ segment decoder has $\mathbf{0 1 0 0}$ on its inputs. The active outputs are
a) $a, c, f ; g$
b) $b, c, f ; g$
c) b, c, e, f
d) b, d, e, g
3) A 6×64 line decoder can be built using:
a) six 2×4 line decoders only
b) nine 2×4 line decoders only
c) seven $3 x 8$ line decoders only
d) nine 3×8 line decoders only
4) A demultiplexer can be used as
a) Encoder
b) Multiplexer
c) Decoder
d) None of the above
5) An 8-to-1 multiplexer has inputs \mathbf{A}, \mathbf{B} and \mathbf{C} connected to the selection inputs $\mathbf{S 2}$, S1 and $\mathbf{S 0}$, respectively. The data inputs $\mathbf{I 0}$ through $\mathbf{I 7}$, are as follows:

$$
\mathbf{I}_{1}=\mathbf{I}_{2}=\mathbf{0} ; \quad \mathbf{I}_{3}=\mathbf{I}_{5}=\mathbf{I}_{7}=\mathbf{1} ; \quad \mathbf{I}_{0}=\mathbf{I}_{4}=\bar{D} \quad \text { and } \quad \mathbf{I}_{6}=\mathbf{D}
$$

The Boolean function that the multiplexer implements is:
a) $\quad F=\operatorname{\Sigma m}(0,6,7,8,10,11,13,14,15)$
b) $\quad F=\Sigma m(1,2,3,4,5,9,12)$
c) $\quad F=\Sigma m(0,6,7,8,9,11,13,14,15)$
d) $\quad F=\Sigma m(0,6,7,9,11,14,15)$

Question 2:
a)
(2 marks)
Solution
$F(x, y, z)=m_{2}+m_{4}+m_{5}$
b)
(5 marks)

Solution

$$
\begin{aligned}
& F 1=(X+Y)^{\prime}+X Y Z=X^{\prime} Y^{\prime}+X Y Z=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y^{\prime} Z+X Y Z=\Sigma m(0,1,7) \\
& F 2=(X Z)^{\prime} Y=X^{\prime} Y+Y Z^{\prime}=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Y Z^{\prime}+X^{\prime} Y Z^{\prime}=\Sigma m(3,2,6) \\
& F 3=\left(X^{\prime}+Y\right)^{\prime}+X^{\prime} Y^{\prime} Z^{\prime}=X Y^{\prime}+X^{\prime} Y^{\prime} Z^{\prime}=X Y^{\prime} Z^{\prime}+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z^{\prime}=\Sigma m(4,5,0)
\end{aligned}
$$

Solution

Question 4:

