Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper
Department of Communication \& Electronics Engineering

Probability and Random Variables

(650364)

Second Exam
First semester
Date: 23/12/2019
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Omar Daoud

Marking Scheme
 Probability and Random Variables (650364)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1: This question is attributed with 5 marks if answered properly, the answer is the following:

1) When three coins are tossed, what is the expected value of the number of heads?
a) 1
b) 2
c) 1.5
d) 2.5
2) The payoff (\mathbf{X}) for a lottery game has the following probability distribution

$\mathrm{X}=$ payoff	$\$ 0$	$\$ 5$
probability	0.8	0.2

What is the expected value of $\mathbf{X}=$ payoff?
a) $\$ 0$
b) $\$ 1.00$
c) $\$ 0.50$
d) $\$ 2.50$
3) Given $\boldsymbol{E}(\boldsymbol{X})=\mathbf{5}$ and $\boldsymbol{E}(\boldsymbol{Y})=-\mathbf{2}$, then $\boldsymbol{E}(\boldsymbol{X}-\boldsymbol{Y})$ is:
a) -2
b) 3
c) 5
d) 7
4) The equation of the mean for uniform distribution is
a) \quad mean $=4(b+a) / 2 b$
b) mean $=(b-2 a) / 4$
c) mean $=(b+a) / 2$
d) mean $=(2 a+2 b) / 2 a$
5) Consider the following functions:
$f(x)=\left\{\begin{array}{cl}\cos x, & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \\ 0, & \text { otherwise, }\end{array} \quad g(x)=\left\{\begin{array}{cl}\cos x, & x \in\left[-\frac{\pi}{2}, \pi\right], \\ 0, & \text { otherwise, }\end{array} \quad h(x)=\left\{\begin{array}{cc}\cos x, & x \in\left[0, \frac{\pi}{2}\right], \\ 0, & \text { otherwise } .\end{array}\right.\right.\right.$

Which of these functions is/are a probability density?
a) Only h
b) Only g
c) $\quad \mathrm{f}$ and g
d) fand h

Question 2: This question is attributed with 4 marks if answered properly, the answer is the following:

Solution

1. $F_{X, Y}(-\infty,-\infty)=0, \quad F_{X, Y}(-\infty, y)=0, F_{X, Y}(x,-\infty)=0$
2. $F_{X, Y}(\infty, \infty)=1$
3. $0 \leq F_{X, Y}(x, y) \leq 1$
4. $F_{X, Y}(x, y)$ is a nondecreas ing function
5. $P\left\{x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right\}=$
$F_{X, Y}\left(x_{2}, y_{2}\right)+F_{X, Y}\left(x_{1}, y_{1}\right)$
$-F_{X, Y}\left(x_{2}, y_{1}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)$
6. $\quad F_{X, Y}(x, \infty)=F_{X}(x) \quad$ and $\quad F_{X, Y}(\infty, y)=F_{Y}(y)$
\checkmark The $n_{\text {th }}$ central moment of the random variable X

\checkmark The second central moment called the variance of X

$$
\begin{aligned}
\sigma_{X}^{2}=\mu_{2} & =E\left[(X-\bar{X})^{2}\right]=E\left[X^{2}-2 \bar{X} X+\bar{X}^{2}\right] \\
& =E\left[X^{2}\right]-2 \bar{X} E[X]+\bar{X}^{2} \\
& =E\left[X^{2}\right]-\bar{X}^{2}=m_{2}-m_{1}^{2}
\end{aligned}
$$

\checkmark The third central moment is a measure of the asymmetry of the density function about the mean value m 0 and called the skew of the density function

$$
\mu_{3}=E\left[(X-\bar{X})^{3}\right]
$$

\checkmark The measure will be positive or negative according to whether the distribution is skewed to the right or left, respectively
Question 3: This question is attributed with 6 marks if answered properly, the answer is the following:
a)

Solution

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} 4 x y d y \\
& =\left.2 x y^{2}\right|_{y=0} ^{y=1}=2 x
\end{aligned}
$$

for $\mathbf{0}<\boldsymbol{x}<\mathbf{1}$, and $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$ elsewhere

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} 4 x y d x \\
& =\left.2 x^{2} y\right|_{x=0} ^{x=1}=2 y
\end{aligned}
$$

for $\mathbf{0}<\boldsymbol{y}<\mathbf{1}$, and $\boldsymbol{h}(\boldsymbol{y})=\mathbf{0}$ elsewhere.

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}=\frac{4 x y}{2 y}=2 x
$$

for $\mathbf{0}<\boldsymbol{x}<\mathbf{1}$, and $\boldsymbol{f}(\boldsymbol{x} \mid \boldsymbol{y})=\mathbf{0}$ elsewhere.
b)
(1.5 marks)

Solution

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \cdot f_{3}\left(x_{3}\right) \\
& =e^{-x_{1}} \cdot 2 e^{-2 x_{2}} \cdot 3 e^{-3 x_{3}} \\
& =6 e^{-x_{1}-2 x_{2}-3 x_{3}}
\end{aligned}
$$

Question 4: This question is attributed with 5 marks if answered properly, the answer is the following:
a)
(3 marks)

Solution

a)

$$
\begin{aligned}
\mathrm{E}[X]=\mu_{X} & =0 \cdot P_{X}(0)+1 \cdot P_{X}(1)+2 \cdot P_{X}(2) \\
& =0(1 / 4)+1(1 / 2)+2(1 / 4)=1
\end{aligned}
$$

b)
$\mathrm{E}[V]=\mathrm{E}[g(X)]=\mathrm{E}[4 X+7]=4 \mathrm{E}[X]+7=4(1)+7=11$.
c) $W=E\left(X^{2}\right)$
$\mathrm{E}[W]=\sum h(x) P_{X}(x)=(1 / 4) 0^{2}+(1 / 2) 1^{2}+(1 / 4) 2^{2}=1.5$.
b)

Solution				
$P_{X, Y}(x, y)$	$y=0$	$y=1$	$y=2$	$P_{X}(x)$
$x=0$	0.01	0	0	0.01
$x=1$	0.09	0.09	0	0.18
$x=2$	0	0	0.81	0.81
$P_{Y}(y)$	0.10	0.09	0.81	

