
 Philadelphia University
Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Algorithms and Data Structures (630231)

 Second Exam First semester Date: 26/12/2010

Section 1

 Weighting 15% of the module total

Lecturer: Dr. Qadri Hamarsheh

Coordinator: Dr. Qadri Hamarsheh

Internal Examiner: Dr. Ali Al-Khawaldeh

Marking Scheme

Algorithms and Data Structures (630231)
The presented exam questions are organized to overcome course material through 5 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 3 marks if answered properly; the answers are as following:
1. In a doubly linked list, every node contains the address of the next node except for the ____ node.

a) middle
b) first
c) last
d) second to last

2. A queue is a ____ data structure.
a) Last In First Out
b) Last In Last Out
c) First In Last Out
d) First In First Out

3. The queue operation ____ returns the first element of the queue
a) front
b) tail
c) delete
d) insert

Question 2 This question is attributed with 3 marks if answered properly; the answers are as following:
Question 2-a
Solution
Receive: An RPN expression.
Return: A stack whose top element is the value of RPN expression (unless an error occurred).
1. Initialize an empty stack.
2. Repeat the following until the end of the expression is encountered:

a. Get next token (constant, variable, arithmetic operator) in the RPN expression.
b. If token is an operand, push it onto the stack.
 If it is an operator, then

(i) Pop top two values from the stack.
 If stack does not contain two items, error due to a malformed RPN
 Evaluation terminated

 (ii) Apply the operator to these two values.
 (iii) Push the resulting value back onto the stack.
3. When the end of expression encountered, its value is on top of the stack
 (and, in fact, must be the only value in the stack).
Question 2-b
Solution

The value is: 3, the infix of this is: ((5 - 1) * 3) / (3 – 1) * 2).
Question 3 This question is attributed with 1.5 marks if answered properly. The complete code for this
question

stack<string> s;
s.push(“hello”);
s.size()

Question 4 This question is attributed with 3.5 marks if answered properly. The complete code for this
question

void print_stack_inorder(Stack my_stack)
{
Stack tempStack;
int temp_val;
int current_min;
while(!my_stack.isEmpty()) { // Do nothing w. empty stack
current_min = my_stack.top(); (1 mark)
// Pop all values off of my_stack and push onto tem pStack.
while(!my_stack.isEmpty()) {
temp_val = my_stack.pop();
tempStack.push(temp_val);

// Keep track of the minimum value.
if (temp_val < current_min)
current_min = temp_val;
} (1 mark)
// Pop all values off of tempStack and push onto my _stack.
while(!tempStack.isEmpty()) {
temp_val = tempStack.pop();
// Print out the current min and don't push back on .
if (temp_val == current_min)
cout << current_min << " " ;
else
my_stack.push(temp_val);
}
}
cout << endl;
} (1.5 marks)

Question 5 This question is attributed with 4 marks if answered properly. The complete code for this question:
template <class Type>
void orderedLinkedList<Type>::mergeLists(orderedLin kedList<Type> &list1,
 orderedLinkedList<Typ e> &list2)
{
 nodeType<Type> *lastSmall; //pointer to the last n ode of the merged list.

 nodeType<Type> *first1 = list1.first;
 nodeType<Type> *first2 = list2.first;
 count = list1.count + list2.count;
 if (list1.first == NULL) //first sublist is empt y
 {
 first = list2.first; list2.first = NULL; count = list2.count;
 }
 else if (list2.first == NULL) // second sublist is empty
 {
 first = list1.first; list1.first = NULL; co unt = list1.count;
 } (1.5 marks)
 else
 {
 if (first1->info < first2->info) //Compare first nodes
 {
 first = first1;first1 = first1->link; l astSmall = first;
 }
 else
 {
 first = first2; first2 = first2->link; lastSmall = first;
 }

 while (first1 != NULL && first2 != NULL)
 {
 if (first1->info < first2->info)
 {
 lastSmall->link = first1; lastSmall = lastSmall->link;
 first1 = first1->link;
 }
 else
 {
 lastSmall->link = first2; lastSmall = lastSmall->link;
 first2 = first2->link;
 }
 } //end while (1.5 marks)

 if (first1 == NULL) //first sublist exh austed first
 lastSmall->link = first2;
 else //second sublist exhausted first
 lastSmall->link = first1;

 list1.first = NULL; list1.last = NULL;
 list2.first = NULL; list2.last = NULL;
 count = list1.count + list2.count;
 }
} (1 mark)

