Philadelphia University
 Faculty of IT

Marking Scheme

Digital Image Processing (0750474)

First exam

Second semester
Date: 21/03/2012
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Nameer N. EL-Emam

Digital Image Processing (0750474)

The presented exam questions are organized to overcome course material through 6 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 4 marks if answered properly; the answers are as following:

1. Imaging Radar Technology is an application of \qquad band.
a) Radio waves
b) Gamma Rays
c) Ultra Violet
d) Micro Waves
2. One f the following functions is not an IPT (image processing toolbox) function used to convert images.
a) dither ()
b) rgb2gray ()
c) gray2rgb ()
d) ind2gray ()
3. The colormap array of the indexed image is always of class
a) uint 8
b) uint16
c) double
d) logical
4. By default, Matlab stores most data in arrays of class
a) uint 8
b) uint16
c) double
d) logical

Question 2: This question is attributed with 2 marks if answered properly, the answers are as following:

- Radiation from Electromagnetic Spectrum
- Acoustic
- Ultrasonic
- Electronic (in the form of electron beams used in electron microscopy)
- Computer (synthetic images used for modeling and visualization)

Question 3: This question is attributed with 3 marks if answered properly, the answers are as following:

Image Type	Data Classes	Range	Number of matrices
1. Intensity (Grayscale images)	uint8 uint16 double	$0-255$ $0-65535$ $0-1$	1
2. Binary Image	logical	0 or 1	1
3. Indexed	Index image (uint8, uint16, double) Image	As intensity images	2
4. RGB Images mapped image (double)	uint8 uint16 double	As intensity images	3

Question 4: This question is attributed with 3 marks if answered properly, the answers are as following:
The complete code for this question as the following:

```
RGB = imread('peppers.png'); (1 mark)
red = RGB(:,:,1);
green = RGB(:,:,2);
blue = RGB(:,:,3); (1 mark)
imshow(red), figure ,
imshow(green), figure
imshow(blue), figure,
imshow (RGB);
(1 mark)
```

Question 5: This question is attributed with 3 marks if answered properly, the answers are as following: The complete code for this question as the following:

```
function [q] = imblend(p1,p2,br)
%IMBLEND Computes the blended version of two grayscale input images
%[Q]=IMBLEND(P1,P2,BR) Computes Q blended image
%using the equation Q(I,J)=BR*P1 (I,J)+(1-BR)*P2(I,J)
%using low-level processing
%X: Mixing proportion or blending ratio, which determine the influences
[M N d] = size(p1);
q = uint8(zeros (M,N)); (1.5 mark)
for x= 1:M
    for y=1:N
        q(x,y) =uint8 (br*p1 (x,y) +(1-br) *p2 (x,y));
    end
end
image (q), figure, image(p1), figure, image(p2)
(1.5 mark)
```

Question 6: This question is attributed with 5 marks if answered properly, the answers are as following: The complete code for this sub question as the following:

```
A=imread('cameraman.tif'); % Read in 1st image
B=imread('pout.tif'); % Read in 2nd image (1 mark)
A1 = A(1:200,1:200);
B1 = B (end-199: end, end-199:end); (1.5 mark)
subplot(1,3,1), imshow(A); title('1st image') % Display 1st image
subplot(1,3,2), imshow(B); title('2nd image') % Display 2nd image
Output = imsubtract(A1, B1);
(1.5 mark)
subplot(1,3,3), imshow(Output);
title('subtract images') % subtract images (1 mark)
```

