

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Neural Networks and Fuzzy Logic (630514)

First Exam

Summer semester

Date: 01/08/2017

Section 1

Weighting 20% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Mohammed Mahdi

Marking Scheme Neural Networks and Fuzzy Logic (630514)

-						naterial through 4 questions.								
The <i>all questions</i> are compulsory requested to be answered.														
<u>Marking Assignments</u> <u>Question 1</u> This question is attributed with 8 marks if answered properly; the answers are as following:														
	 1) What are the advantages of neural networks over conventional computers? (i) They have the ability to learn by example. (ii) They are more fault tolerant. (iii) They are more suited for real time operation due to their high 'computational' rates. a) (i) and (ii) are true b) (i) and (iii) are true 													
		а) с)	(i) and (ii) are true Only (i)			All of the mentioned								
2)	c)Only (i)d)All of the mentionedA perceptron adds up all the weighted inputs it receives. If the sum exceeds a certain value, then the perceptron outputs a 1, otherwise it just outputs a 0, the name for the activation function is a)Sigmoid function.b)Bipolar step function.													
	C)) I	ogistic function.	d)	d) Unipolar step function.									
3)														
		C)	119		d)	123								
4)	A sin	σle-la	ver perceptron has 3 i	nput units and 3	output un	nits. How many weights does this network have?								
-,	 4) A single-layer perceptron has 3 input units and 3 output units. How many weights does this not a) 6 9 													
		C)	18		d)	25								
5)	Which of the following 2 input Boolean logic functions are linearly separable ?													
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
		a)	(i) and (iv)		b)	(iii) and (v)								
		C)	. (i), (ii) and (iii)		d)	(i), (ii) and (iv)								
6)	The ne			-		put and hidden layers is called as								
	a) Self-organizing maps				b)	Recurrent neural network								
		C)	Multi layered perce	ptron	d)	Perceptrons								
7)			ed learning:											
	a		e algorithms are know	wn but not the	inputs									
	b) Bo	th the inputs and the o	lesire <mark>d outpu</mark> t	s are kno	own								
	C) Or	ly input stimuli are s	hown to the ne	twork									
	ď) No	ne of the above											
8)	What o	does th	e following MATLAB fur	nction do?										
	a) b)	acti	ialize a multi-layer r vation functions.	network with	10 hidder	ansig', 'logsig'}); n units, 3 output units and sigmoid activation functions, 10 hidden units								

and 3 recurrent connections back to the input layer.

activation functions.

c) Initialize a single-layer network with 10 input units, 3 output units and linear

d) Initialize a multi-layer network with non-linear activation functions and two hidden

layers – the first hidden layer has 10 units and the second one has 3 units.

Que

 $out_{h2} = 0.596884378$

 $net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$ $net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967$ $out_{o1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-1.105905967}} = 0.75136507$ And carrying out the same process for o_2 we get: $out_{o2} = 0.772928465$ Calculating the Total Error $E_{total} = \sum \frac{1}{2} (target - output)^2$ $E_{o1} = \frac{1}{2} (target_{o1} - out_{o1})^2 = \frac{1}{2} (0.01 - 0.75136507)^2 = 0.274811083$ $E_{o2} = 0.023560026$ $E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109$

Question 4 This question is attributed with 4 marks if answered properly; the answers are as following:

				Sc	olution								
% Load the data points into Workspace													
Points = [10	15	1	4	Z	22;							
	5	10	2	9	3	15;							
	-3	-7	30	55	-5	23;							
	-2	0	20	15	-7	9];							
Group =[0	0	1	1	0	1];		% 1 mark						
% Assign training inputs and targets													
P = Points; % inputs													
T = Group; % targets													
% Construct a four-input, single-output perceptron													
net = newp (minmax (P), 1); % 0.5 mark													
% Train the perceptron network with training inputs (p) and targets (t)													
	net = train (net, P, T); % 0.5 mark												
% Simulate the perceptron network with same inputs again													
a = sim (ne	% 0.5 mark												
%>> a =													
%00110101% correct classification													
%>> T =													
%00110101													
% Querying the perceptron with inputs it never <i>seen</i> before													
P7= [2;3;88;23];													
P8 = [7;7;-3	% 0.5 mark												
a_P7 = sim (net, P7) % 0.5 n													
%>> a_P7 =													
%1													
a_P8 = sim (net, P8); % 0.5 marl													
%>> a_P8 =													
% 0													