

Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper

BSc CE

Logic Circuits (630211)

First Exam

First semester

Date: 18/11/2018

Section 1

Weighting 20% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Eng. Anis Nazer

Marking Scheme Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 6 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

<u>Question 1</u> This question is attributed with 8 marks if answered properly; the answers are as following:
 1) Convert the hexadecimal number 14B₁₆ to binary.

8) The K-map in the figure below shows the correct implementation of the expression X = ACD + AB (CD + BC).

/	ĒĒ	ĒΡ	CD	сБ	
ĀΒ	0	0	0	0	
ĀВ	0	0	1 0	1	
A B	0	0			
ΑB	0	0	0	1	
				_	-

a) True

Question 2 This question is attributed with 2 marks if answered properly; the answers are as following:

Question 3 This question is attributed with 2 marks if answered properly; the answers are as following:

Solution $Q = B.C.(\overline{C} + D) + C.D + C + \overline{A}$ $Q = B.C.\overline{C} + B.C.D + C.D + C + \overline{A}$ $Q = B.0 + B.C.D + C.(D + 1) + \overline{A}$ $Q = B.C.D + C + \overline{A}$ $Q = C.(B.D + 1) + \overline{A}$ $Q = C.1 + \overline{A}$ $Q = C + \overline{A}$

Question 4 This question is attributed with 2 marks if answered properly; the answers are as following:

 Solution

 SOP expression:

 $\overline{A} \ \overline{B} \ \overline{C} + \overline{A} B \overline{C} + A \overline{B} C + A \overline{B} \overline{C}$

 POS expression:

 $(A + B + \overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$

Question 5 This question is attributed with 2 marks if answered properly; the answers are as following:

Solution

 $\begin{array}{l} x + yz = x(1) + (1)yz = x(y + y') + (x + x')yz = xy + xy' + xyz + x'yz \\ = xy(1) + xy'(1) + xyz + x'yz = xy(z + z') + xy'(z + z') + xyz + x'yz \\ = xyz + xyz' + xy'z + xy'z' + xyz + x'yz \\ = xyz + xyz' + xy'z + xy'z' + x'yz - - - (x + x = x) \\ = 111 + 110 + 101 + 100 + 011 \\ = m7 + m6 + m5 + m4 + m3 \\ x + yz = \sum m(3, 4, 5, 6, 7) \end{array}$

Question 6 This question is attributed with 4 marks if answered properly; the answers are as following:

Solution									
	$B \overline{AB}$	$\overline{A}B$	AB	$A\overline{B}$	$E(A, B, C, D) = \overline{D} + \overline{ABC} + A\overline{BC}$				
$\overline{C}\overline{D}$	m0 1	m4 1	m12 1	m8 1	F(A, B, C, D) = D + ABC + ABC				
$\overline{C}D$	m1 0	m5 0	m13 0	m9 1					
CD	- m3 1	m7 0	m15 0	m11 0					
$C\overline{D}$	m2 1	m6 1	m14 1	m10 1					