Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

First semester
Date: 18/11/2018
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:

Dr. Qadri Hamarsheh

Dr. Qadri Hamarsheh
Eng. Anis Nazer

Marking Scheme

Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 6 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 8 marks if answered properly; the answers are as following:

1) Convert the hexadecimal number $\mathbf{1 4 B}_{16}$ to binary.
a) $\quad \mathbf{1 1 0 1 0 1 0 0 0 0 0 1} 1_{2}$
b) $\quad 000101001101_{2}$
c) 000101001011_{2}
d) $\quad 101101000001_{2}$
2) $(734)_{8}=()_{16}$
a) 1DC
b) ClD
c) DCl
d) $1 \mathbf{C D}$
3) Convert 59.72_{10} to $\mathbf{B C D}$.
a) 111011
b) 0101100101110010
c) 1110.11
d) 01011001.01110010
4) The range of decimal numbers that can be written in 6 bit sign magnitude form:
a) -31 to 31
b) 0 to 64
c) $\quad \mathbf{- 3 2}$ to $\mathbf{3 1}$
d) $\quad \mathbf{- 6 4}$ to 64
5) The circuit given below implements the equation, $x=\bar{A} B+A \bar{C}+A B C$.

a) True
b) False
6) The logic circuit shown can be minimized to

a) A
b) B
c) \mathbf{C}
d) D
7) From the truth table below, determine the standard SOP expression.

a) $X=\bar{A} \bar{B} \bar{C}+A B C+A \bar{B} C$
b) $\quad X=A B C+A B C+A B C$
c) $X=A \bar{B} C+\bar{A} B C+A B \bar{C}$
d) $\quad X=\bar{A} \bar{B} C+\bar{A} B C+A B \bar{C}$
8) The K-map in the figure below shows the correct implementation of the expression $\mathbf{X}=\mathbf{A C D}+\mathbf{A B}$ (CD + BC).

	$\overline{\bar{c}} \overline{\mathrm{D}}$	$\overline{\mathrm{C}} \mathrm{D}$	CD	C \bar{D}
	o	o	o	o
	o	0	1	1
	o	0	0	1
	o	o	o	1

a) True
b) False

Question 2 This question is attributed with 2 marks if answered properly; the answers are as following:

Question 3 This question is attributed with 2 marks if answered properly; the answers are as following:

Solution

$Q=B . C .(\bar{C}+D)+C . D+C+\bar{A}$
$Q=B . C . \bar{C}+B \cdot C . D+C . D+C+\bar{A}$
$Q=B .0+B . C . D+C .(D+1)+\bar{A}$
$\boldsymbol{Q}=\boldsymbol{B} . \boldsymbol{C} . \boldsymbol{D}+\boldsymbol{C}+\overline{\boldsymbol{A}}$
$Q=C .(B . D+1)+\bar{A}$
$Q=C .1+\bar{A}$
$Q=C+\bar{A}$
Question 4 This question is attributed with 2 marks if answered properly; the answers are as following:

Solution

SOP expression:

$$
\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} C+A B \bar{C}
$$

POS expression:

$$
(A+B+\bar{C})(A+\bar{B}+\bar{C})(\bar{A}+B+C)(\bar{A}+\bar{B}+\bar{C})
$$

Question 5 This question is attributed with 2 marks if answered properly; the answers are as following:

Solution

$$
\begin{aligned}
& x+y z=x(1)+(1) y z=x\left(y+y^{\prime}\right)+\left(x+x^{\prime}\right) y z=x y+x y^{\prime}+x y z+x^{\prime} y z \\
& =x y(1)+x y^{\prime}(1)+x y z+x^{\prime} y z=x y\left(z+z^{\prime}\right)+x y^{\prime}\left(z+z^{\prime}\right)+x y z+x^{\prime} y z \\
& =x y z+x y z^{\prime}+x y^{\prime} z+x y^{\prime} z^{\prime}+x y z+x^{\prime} y z \\
& =x y z+x y z^{\prime}+x y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y z---(x+x=x) \\
& =111+110+101+100+011 \\
& =\mathrm{m} 7+\mathrm{m} 6+\mathrm{m} 5+\mathrm{m} 4+\mathrm{m} 3 \\
& x+y z=\sum m(3,4,5,6,7)
\end{aligned}
$$

Question 6 This question is attributed with 4 marks if answered properly; the answers are as following:

