Philadephia University
Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

First Exam First semester Date: 21/11/2019

Section 1
Weighting 20% of the module total

Lecturer: Dr. Qadri Hamarsheh
Coordinator: Dr. Qadri Hamarsheh
Internal Examiner: Dr. Naser Halasa
Marking Scheme

Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 6 marks if answered properly; the answers are as following:

1) The **binary** number for \(\text{F7A}_{16} \) is

 a) 1110111110101001
 b) 1111111010110001
 c) **1110111101010001**
 d) 1111011010101001

2) When signed numbers are used in binary arithmetic, then which one of the following notations would have **unique** representation for zero?

 a) Sign-magnitude
 b) 9’s complement
 c) 1’s complement
 d) **2’s complement**

3) The **signed magnitude** number \(\text{11001100}_{2} \) is equivalent to

 a) \(-76_{10} \)
 b) \(204_{10} \)
 c) \(\text{CC}_{16} \)
 d) \(1212_{10} \)

4) The **octal** equivalent of the number \(\text{700}_{16} \) is:

 a) 1000
 b) **3400**
 c) 700
 d) 7000

5) The **octal** number represented by the **binary** number \(\text{110111011.101}_{2} \) is

 a) **673.5**
 b) 3131.21
 c) **none of the above**

6) In the sum of products functions \(f(X, Y, Z) = \sum(2, 3, 4, 5) \), the **prime implicants** are

 a) \(\bar{X}Y, XY \)
 b) \(\bar{X}Y, XYZ, XYZ \)
 c) \(\bar{X}YZ, XYZ, XY \)
 d) \(\bar{X}YZ, XYZ, XYZ, XYZ \)

Question 2 This question is attributed with 5 marks if answered properly; the answers are as following:

a) **(2 marks)**

 ![Solution](image1)

b) **(3 marks)**

 ![Solution](image2)
Question 3 This question is attributed with 5 marks if answered properly; the answers are as following:

\[D = (\overline{A} + B)(C + \overline{C})(\overline{B} + C)(A + \overline{A}) \]
\[= (A + B + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + B + C) \]
\[= M_2 \cdot M_4 \cdot M_5 \cdot M_6 = \Pi(2, 4, 5, 6) \]

Product of Maxterms

\[D = \Sigma(0, 1, 3, 7) = m_0 + m_1 + m_3 + m_7 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + ABC \]

b)

Solution

\[
\begin{array}{cccc|c}
 w & x & y & z & \text{Output} = wx + xz + y \\
\hline
 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 & 1 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 1 & 1 \\
 0 & 1 & 1 & 0 & 0 \\
 0 & 1 & 1 & 1 & 1 \\
 1 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 1 & 1 \\
 1 & 0 & 1 & 0 & 0 \\
 1 & 0 & 1 & 1 & 0 \\
 1 & 1 & 0 & 0 & 1 \\
 1 & 1 & 0 & 1 & 1 \\
 1 & 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Question 4 This question is attributed with 4 marks if answered properly; the answers are as following:

Solution

\[E = \overline{A} + C \]