Philadelphia University Faculty of Engineering

Marking Scheme

Exam Paper
BSc CE

Logic Circuits (630211)

First Exam
First semester
Date: 21/11/2019
Section 1
Weighting 20% of the module total

Lecturer:
Coordinator:
Internal Examiner:
Dr. Qadri Hamarsheh
Dr. Qadri Hamarsheh
Dr. Naser Halasa

Marking Scheme

Logic Circuits (630211)

The presented exam questions are organized to overcome course material through 4 questions.
The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 6 marks if answered properly; the answers are as following:

1) The binary number for $\mathbf{F 7 A} 9_{16}$ is
a) 1110111110101001
b) 1111111010110001
c) 1111011110101001
d) 1111011010101001
2) When signed numbers are used in binary arithmetic, then which one of the following notations would have unique representation for zero?
a) Sign-magnitude
b) 9's complement
c) 1's complement
d) 2's complement
3) The signed magnitude number $\mathbf{1 1 0 0 1 1 0 0} 2$ is equivalent to
a) -76_{10}
b) $\quad 204_{10}$
c) $\quad \mathbf{C C}_{16}$
d) 1212_{10}
4) The octal equivalent of the number ($\mathbf{7 0 0}_{16}$ is:
a) $\mathbf{1 0 0 0}$
b) 3400
c) $\mathbf{7 0 0}$
d) $\mathbf{7 0 0 0}$
5) The octal number represented by the binary number $\mathbf{1 1 0 1 1 1 0 1 1 . 1 0 1 _ { 2 }}$ is
a) 673.5
b) 31311.21
c) 1 BB
d) none of the above
6) In the sum of products functions $f(X, Y, Z)=\sum(2,3,4,5)$, the prime implicants are
a) $\bar{X} Y, X \bar{Y}$
b) $\bar{X} Y, X \bar{Y} \bar{Z}, X \bar{Y} Z$
c) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y}$
d) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y} \bar{Z}, X \bar{Y} Z$

Question 2 This question is attributed with 5 marks if answered properly; the answers are as following:

Solution

$$
\begin{aligned}
f & =A B+A \bar{C}+C+A D+A \overline{B C}+A B C \\
& =A B+A \bar{C}+C+A D+A C(B+\bar{B}) \\
& =A B+A \bar{C}+C+A D+A C \\
& =A B+C+A D+A(C+\bar{C}) \\
& =A B+A+A D+C \\
& =A(1+B)+A D+C \\
& =A+A D+C D \\
& =A(1+D)+C
\end{aligned}
$$

$f=A B+A \bar{C}+C+A D+A \overline{B C}+A B C$
$=A B+A \bar{C}+C+A D+A C(B+\bar{B})$
$=A B+A \bar{C}+C+A D+A C$
$=A B+C+A D+A(C+\bar{C})$
$=A B+A+A D+C$
$=A(1+B)+A D+C$
$=A+A D+C$
$=A(1+D)+C$
$=A+C$
b)
(2 marks)

Solution

Solution

The expression for the output of the circuit is

```
X=(\overline{A}\overline{B}\overline{C}})C+\overline{\overline{A}}\overline{B}\overline{C}+
```

Applying DeMorgan's theorem and Boolean algebra

$$
\begin{aligned}
X & =(\overline{\bar{A}}+\overline{\bar{B}}+\overline{\bar{C}}) C+\overline{\bar{A}}+\overline{\bar{B}}+\overline{\bar{C}}+D \\
& =A C+B C+C C+A+B+C+D \\
& =A C+B C+C+A+B+\not C+D \\
& =C(A+B+1)+A+B+D \\
X & =A+B+C+D
\end{aligned}
$$

Question 3 This question is attributed with 5 marks if answered properly; the answers are as following:
a)
(3 marks)

Solution

product of maxterms

$$
\begin{aligned}
D & =(\bar{A}+B)(C+\bar{C})(\bar{B}+C)(A+\bar{A}) \\
& =(A+\bar{B}+C)(\bar{A}+B+C)(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C) \\
& =M_{2} \cdot M_{4} \cdot M_{5} \cdot M_{6}=\Pi(2,4,5,6)
\end{aligned}
$$

sum of minterms

$$
\mathrm{D}=\Sigma(0,1,3,7)=\mathrm{m}_{0}+\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{7}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}
$$

b)

Solution					
$\mathbf{f}(w, x, y, z)=w x+x z+y$					
w	x	y	z	Output= $w x+x z+\bar{y}$	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

Question 4 This question is attributed with 4 marks if answered properly; the answers are as following:

