Marking Scheme

Exam Paper
BSc CS

Digital Image Processing (0750474)

Second exam Second semester Date: 02/05/2012
Section 1
Weighting 20% of the module total

Lecturer: Dr. Qadri Hamarsheh
Coordinator: Dr. Qadri Hamarsheh
Internal Examiner: Dr. Nameer N. EL-Emam
Marking Scheme

Digital Image Processing (0750474)

The presented exam questions are organized to overcome course material through 6 questions. The all questions are compulsory requested to be answered.

Marking Assignments

Question 1 This question is attributed with 4 marks if answered properly; the answers are as following:
1. To map a narrow range of low gray-level input image into a wider range of output levels, we use
 a) Log Intensity Transformation Function
 b) Power-law Intensity Transformation Function
 c) Inverse Log Intensity Transformation Function
 d) Identity Intensity Transformation Function

2. The sum of all elements in the mask of the smoothing averaging spatial filtering must be equal to
 a) \(m \) rows
 b) \(n \) columns
 c) \(m \times n \)
 d) \(1 \)

3. Sharpening the images is commonly accomplished by performing a spatial _______ of the image field.
 a) Min Filter
 b) Smoothing Filter
 c) Integration
 d) Differentiation

4. One of the following filters is nonlinear
 a) Gaussian Filter
 b) Averaging Filter
 c) Laplacian Filter
 d) Median

Question 2: This question is attributed with 2 marks if answered properly, the answers are as following:

Solution: Let \(p \) and \(q \) be as shown in Fig. Then,

a) \(S_1 \) and \(S_2 \) are not 4-connected because \(q \) is not in the set \(N_4(p) \);

b) \(S_1 \) and \(S_2 \) are 8-connected because \(q \) is in the set \(N_8(p) \);

c) \(S_1 \) and \(S_2 \) are \(m \)-connected because
 i. \(q \) is in \(N_8(p) \), and
 ii. The set \(N_4(p) \cap N_4(q) \) is empty.

Question 3: This question is attributed with 2 marks if answered properly, the answers are as following:

Highlighting a specific range of gray levels in an image: Display a high value of all gray levels in the range of interest and a low value for all other gray levels.

a) Transformation highlights range \([A, B]\) of gray level and reduces all others to a constant level

b) Transformation highlights range \([A, B]\) but preserves all other levels
Question 4: This question is attributed with 3 marks if answered properly, the answers are as following:

Solution

a) 3.67

b) 16

c) 3.59

d) histogram of the whole image:

<table>
<thead>
<tr>
<th>Intensity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Question 5: This question is attributed with 3 marks if answered properly, the answers are as following:

The complete code for this question as the following:

```matlab
f = imread('pout.tif');
cdf = cumsum(imhist(f)./numel(f));
x = linspace(0,1,100);
plot(x,cdf);
axis([0 1 0 1]);
set(gca,'xtick',0:0.2:1);
set(gca,'ytick',0:0.2:1);
xlabel('Input Intensity Values','fontsize', 9);
ylabel('Output Intensity Values','fontsize', 9);
text(0.5,0.5,'Transformation Function','fontsize',9); (2 marks)
```

Question 6: This question is attributed with 6 marks if answered properly, the answers are as following:

The complete code for this question as the following:

```matlab
function imf_gaussian (imagename,varargin)
% IMF_GAUSSIAN (IMAGENAME,'default')
%using fspecial function to create the filter mask
%gaussian filter mask size of 7 rows and 7 columns
%standard deviation equal 5
%filterMode ='conv'
% IMF_GAUSSIAN (IMAGENAME,'manual')
%create manually a blur (Gaussian) filter mask
%mask = [ 1,4,7,4,1;
% 4,20,33,20,4;
% 7,33,55,33,7;
% 4,20,33,20,4;
% 1,4,7,4,1
%]
%standard deviation equal 5
%filterMode ='conv'
% IMF_GAUSSIAN (IMAGENAME,'special',filtersize,sigma,filterMode)
%using fspecial function to create the filter mask
%gaussian filter mask size defined by filtersize
%standard deviation defined by sigma
%filtering Mode = filterMode
%the default value are
%filtersize = [5 5];
%sigma = 1
%filtermode = 'corr'
error(nargchk(2, 5, nargin))
imagenamematrix = imread(imagename);
method = varargin{1};
switch method
    case 'default'
        filtersize = [7 7];
        sigma = 5;
        gaussianFilter = fspecial ('gaussian', filtersize, sigma);
        filterMode = 'conv';
        gaussianimage = imfilter(imagenamematrix, gaussianFilter,...
            'symmetric', filterMode);
    case 'manual'
        gaussianFilter = [1, 4, 7, 4, 1; 4, 20, 33, 20, 4; 7, 33, 55, 33, 7; ...
            4, 20, 33, 20, 4; 1, 4, 7, 4, 1];
        sigma = 5;
        filterMode = 'conv';
        gaussianimage = imfilter(imagenamematrix, gaussianFilter,...
            'symmetric', filterMode);
    case 'special'
        if length(varargin) == 1
            filtersize = [5 5];
            sigma = 1;
            filtermode = 'corr';
        elseif length(varargin) == 4
            filtersize = varargin{2};
            sigma = varargin{3};
            filtermode = varargin{4};
        else
            error('See help file to call the function correctly');
        end
        gaussianFilter = fspecial ('gaussian', filtersize, sigma);
        gaussianimage = imfilter(imagenamematrix, gaussianFilter,...
            'symmetric', filtermode);
end
imshow(imagenamematrix);
figure, imshow(gaussianimage)
title('Blurred peppers');