

Philadelphia University Faculty of Engineering

Marking Scheme

Examination Paper BSc CE

Topics in Computer and Software Engineering (630593)

Second Exam

First semester

Date: 22/12/2010

Section 1

Weighting 15% of the module total

Lecturer: Coordinator: Internal Examiner: Dr. Qadri Hamarsheh Dr. Qadri Hamarsheh Dr. Mohammed Beni Younis

Marking Scheme

Topics in Computer and Software Engineering (630593)

The presented exam questions are organized to overcome course material through 4 questions. The *all questions* are compulsory requested to be answered.

Marking Assignments

<u>Question</u> 1 This question is attributed with 5 marks if answered properly; the answers are as following:

Question 1.a

With Gamma Transformations, you can curve the grayscale components either to brighten the intensity (when gamma is less than one) or darken the intensity (when gamma is greater than one). f is the input image, gamma controls the curve, and [low_in high_in] and [low_out high_out] are used for clipping. Values below low_in are clipped to low_out and values above high_in are clipped to high_out. We use [] for both [low_in high_in] and [low_out high_out]. This means that the full range of the input is mapped to the full range of the output.

Question 1.b

(1.5 marks)

Question 1.c

(2 marks)

The MATLAB code that created these three images is:

```
I=imread('tire.tif');
J=imadjust(I,[],[],1);
J2=imadjust(I,[],[],3);
J3=imadjust(I,[],[],0.4);
imshow(J);
figure,imshow(J2);
figure,imshow(J3);
```


Question 2: This question is attributed with 3 marks if answered properly. The complete code for this question as the following: f = imread('pout.tif'); h = imhist(f); h1 = h(1:10:256); horiz = 1:10:256; bar(horiz,h1); (1.5 marks) xlabel('Intesity Level','fontsize',12); ylabel('Count of Pixels','fontsize',12); title('Image Histogram'); axis([0 255 0 1500]); set(gca,'xtick',[0:50:255]); set(gca,'ytick',[0:200:1500]); (1.5 marks)

Question 3: This question is attributed with 2 marks if answered properly, the answer is as following:

- 1. Zero padding (or some value) method: fill outside the Image with zeros.
- **2.** Border replication method: the value of any pixel outside the image is determined by replicating the value from the nearest border pixel.
- 3. Circular method.
- 4. Symmetric method.

<u>Ouestion 4</u>: This question is attributed with 5 marks if answered properly, the answers are as following: The complete code for this question as the following:

```
function g1 = myfilter(f, w)
%MYFILTER Performs spatial correlation
% check that w is 3x3
      [m,n]=size (w);
      if m~=3 | n~=3
          error ('Filter must be 3x3')
      end
                                                                       (1 mark)
%get size of f
      [x,y]=size(f);
%create padded f (called g)
     g=zeros(x+2, y+2);
      for i=1:x
          for j=1:y
              g(i+1,j+1)=f(i,j);
          end
                                                                       (1.5 marks)
      end
%cycle through the array and apply the filter
     for i=1:x
          for j=1:y
              g1(i,j)=g(i,j)*w(1,1)+g(i+1,j)*w(2,1)+g(i+2,j)*w(3,1) \dots
              + g(i,j+1)*w(1,2)+g(i+1,j+1)*w(2,2)+g(i+2,j+1)*w(3,2)...
              + g(i,j+2)*w(1,3)+g(i+1,j+2)*w(2,3)+g(i+2,j+2)*w(3,3);
          end
      end
                                                                       (1.5 marks)
%Convert to uint
       g1=uint8(g1);
%function using in matlab interactive code:
      %>> w=[1/9 1/9 1/9; 1/9 1/9; 1/9; 1/9 1/9];
      %>> f=imread('pout.tif');
      %>> g=myfilter(f,w);
                                                                       (1 mark)
```