Student Name:
 Student Number:
 Serial Number:

Second Exam, First Semester: 2019/2020
Dept. of Communication \& Electronics Engineering

Course Title:	Probability and Random Variables	Date:	$23 / 12 / 2019$
Course No:	650364	Time Allowed:	60 minutes
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	4

Instructions:

- ALLOWED: pens, calculators and drawing tools (no red color).
- NOT ALLOWED: Papers, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains four questions totaling 20 marks.

Basic notions: The aims of the questions in this part are to evaluate the required minimal student knowledge and skills. Answers in the pass category represent the minimum understanding of basic concepts: Statistics of Random Variables (Expectation, Moments), Vector random variables, Joint density and distribution functions, Statistical independence, Central limit theorem, multiple random variables

Question 1 Multiple Choice

Identify the choice that best completes the statement or answers the question.

1) When three coins are tossed, what is the expected value of the number of heads?
a) 1
b) 2
c) 1.5
d) 2.5
2) The payoff (\mathbf{X}) for a lottery game has the following probability distribution

$\mathrm{X}=$ payoff	$\$ 0$	$\$ 5$
probability	0.8	0.2

What is the expected value of $\mathbf{X}=$ payoff?
a) $\$ 0$
b) $\$ 1.00$
c) $\$ 0.50$
d) $\$ 2.50$
3) Given $\boldsymbol{E}(\boldsymbol{X})=\mathbf{5}$ and $\boldsymbol{E}(\boldsymbol{Y})=-\mathbf{2}$, then $\boldsymbol{E}(\boldsymbol{X}-\boldsymbol{Y})$ is:
a) -2
b) 3
c) 5
d) 7
4) The equation of the mean for uniform distribution is
a) mean $=4(b+a) / 2 b$
b) mean $=(b-2 a) / 4$
c) \quad mean $=(b+a) / 2$
d) mean $=(2 a+2 b) / 2 a$
5) Consider the following functions:

$$
f(x)=\left\{\begin{array}{cl}
\cos x, & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \\
0, & \text { otherwise, }
\end{array} \quad g(x)=\left\{\begin{array}{cc}
\cos x, & x \in\left[-\frac{\pi}{2}, \pi\right], \quad h(x)=\left\{\begin{array}{cc}
\cos x, & x \in\left[0, \frac{\pi}{2}\right], \\
0, & \text { otherwise, },
\end{array} \quad\right. \text { otherwise. }
\end{array}\right.\right.
$$

Which of these functions is/are a probability density?
a) Only h
b) Only g
c) $\quad f$ and g
d) f and h

Familiar and Unfamiliar Problems Solving: The aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems: Statistics of Random Variables (Expectation, Moments), Vector random variables, Joint density and distribution functions, Statistical independence, Central limit theorem, multiple random variables
Question 2 (4 marks)
a) List four Properties of the Joint CDF Distribution (write equations): (2 marks)

Solution
b) Explain the first, second and third Central Moments (description and equation) (2 marks)
a) Given the joint probability density

$$
f(x, y)= \begin{cases}4 x y & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the marginal densities of \boldsymbol{X} and \mathbf{Y} and the conditional density of \boldsymbol{X} given $\boldsymbol{Y}=\boldsymbol{y}$.

Solution

b) Given the independent random variables $\mathbf{X}_{1}, \mathbf{X}_{2}$, and \mathbf{X}_{3} with the probability densities

Find their joint probability density.
a) Random variable \mathbf{X} has PIMF

$$
P_{X}(x)= \begin{cases}1 / 4 & x=0 \\ 1 / 2 & x=1 \\ 1 / 4 & x=2 \\ 0 & \text { otherwise }\end{cases}
$$

i. Calculate $\boldsymbol{E}[\boldsymbol{X}]$
ii. Calculate the expected value of $V=\boldsymbol{g}(\boldsymbol{X})=4 X+7$
iii. Calculate the second moment about the origin

Solution

b) The joint PIMF shown in the following table. Find the marginal PMFs for the random variables \mathbf{X} and Y.

$P_{X, Y}(x, y)$	$y=0$	$y=1$	$y=2$
$x=0$	0.01	0	0
$x=1$	0.09	0.09	0
$x=2$	0	0	0.81

Solution

