## Student Name: <br> Student Number: <br> Serial Number:

Second Exam, Second Semester: 2018/2019
Dept. of Computer Engineering

| Course Title: | Logic Circuits | Date: | $01 / 05 / 2019$ |
| :--- | :--- | :--- | :--- |
| Course No: | $\mathbf{6 3 0 2 1 1}$ | Time Allowed: | 50 minutes |
| Lecturer: | Dr. Qadri Hamarsheh | No. Of Pages: | 4 |

## Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 4 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Question 1 Multiple Choice
(6 marks)
Identify the choice that best completes the statement or answers the question.

1) $\mathbf{B C D}$ to 7 segments is
a) encoder
b) $\operatorname{mux}$
c) decoder
d) demux
2) To implement binary full adder using decoders we need:
a) 3-to-8 active high decoder with one AND logic gate
b) 3-to-8 active high decoder with two AND logic gates
c) 3-to-8 active high decoder with one OR logic gate
d) 3-to-8 active high decoder with two OR logic gates
3) The carry propagation in binary full adder can be expressed as $\qquad$ .
a) $\quad \mathbf{C}_{\mathrm{p}}=\mathrm{AB}$
b) $\mathbf{C}_{\mathrm{p}}=\mathbf{A}+\mathbf{B}$
c) $\quad C_{p}=A \oplus B$
d) $\quad C_{p}=A \oplus \bar{B}$
4) Encoders $3 \times 8$ are made by three
a) AND gate
b) OR gate
c) XOR gate
d) NAND gate
5) If the input combination $\mathbf{S}=\mathbf{1}, \mathbf{R}=\mathbf{1}$ is applied to $\mathbf{N O R}$ Based $\mathbf{S R}$ Latch circuit, the (steady state) output will be:
a) $\quad Q=0, Q^{\prime}=0$
b) $\quad Q=0, Q^{\prime}=1$
c) $\quad Q=1, Q^{\prime}=0$
d) $\quad Q=1, Q^{\prime}=1$
6) Flip flop is:
a) level sensitive
b) Edge sensitive
c) Both of $a$ and $b$
d) None of the above

Explain the working of a demultiplexer with the help of the logic circuit

## Solution

Design BCD to Excess-3 code converter using decoder 4x16.
Solution
a) Implement 2 input NAND gate function using a 2:1 multiplexer.

## Solution

b) Find the Boolean function $\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y})$ and express it in the simplified $\mathbf{S O P}$ format. (2 marks)


## Solution

## GOOD LUCK

