Philadelphia University

Faculty of Engineering

Student Name: Student Number: Serial Number:

Second Exam, Second Semester: 2018/2019 Dept. of Computer Engineering

Course Title:	Logic Circuits	Date:	01/05/2019
Course No:	630211	Time Allowed:	50 minutes
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	4

Instructions:

■ **ALLOWED**: pens and drawing tools (**no red color**).

- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 4 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

(6 marks)

Identify the choice that best completes the statement or answers the question.

- 1) BCD to 7 segments is
 - a) encoder

b) mux

c) decoder

- d) demux
- 2) To implement binary full adder using decoders we need:
 - a) 3-to-8 active high decoder with one AND logic gate
 - b) 3-to-8 active high decoder with two AND logic gates
 - c) 3-to-8 active high decoder with one OR logic gate
 - d) 3-to-8 active high decoder with two OR logic gates
- 3) The carry propagation in binary full adder can be expressed as ______
 - a) $C_p = AB$

 $\mathbf{b)} \qquad \mathbf{C}_{\mathbf{p}} = \mathbf{A} + \mathbf{B}$

c) $C_p = A \oplus B$

 $\mathbf{d)} \qquad \mathbf{C}_{n} = A \oplus \overline{B}$

- **4) Encoders 3x8** are made by three
 - a) AND gate

b) OR gate

c) XOR gate

- d) NAND gate
- 5) If the input combination **S=1, R=1** is applied to **NOR** Based **SR** Latch circuit, the (steady state) output will be:
 - a) Q=0, Q'=0

b) Q=0, Q'=1

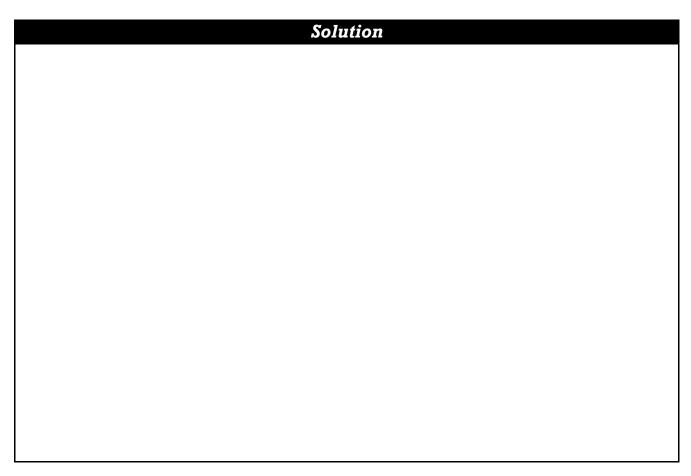
c) Q=1, Q'=0

d) Q=1, Q'=1

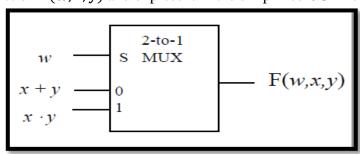
- **6)** Flip flop is:
 - a) level sensitive

b) Edge sensitive

c) Both of a and b


d) None of the above

Solution


	Solution
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
Í	

a) Implement 2 input NAND gate function using a 2:1 multiplexer.

(3 marks)

b) Find the Boolean function F(w, x, y) and express it in the simplified **SOP** format. (2 marks)

Solution

GOOD LUCK