Student Name:
 Student Number:
 Serial Number:

Second Exam, First Semester: 2019/2020
Dept. of Computer Engineering

Course Title:	Logic Circuits	Date:	$02 / 01 / 2020$
Course No:	$\mathbf{6 3 0 2 1 1}$	Time Allowed:	50 minutes
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	4

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 4 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.

Question 1 Multiple Choice

Identify the choice that best completes the statement or answers the question.

1) The sum of ripple carry adder is
a) $\mathrm{S}_{i}=\mathrm{A}_{i} \oplus \mathrm{~B}_{i} \oplus \mathrm{C}_{i}$
b) $\quad \mathrm{S}_{i}=\mathrm{A}_{i} \mathrm{~B}_{i}+\mathrm{A}_{i} \mathrm{C}_{i}+\mathrm{B}_{i} \mathrm{C}_{\boldsymbol{i}}$
c) $\quad \mathrm{S}_{i}=\mathrm{A}_{i}+\mathrm{B}_{i}+\mathrm{C}_{i}$
d) $\quad \mathbf{S}_{i}=\mathrm{A}_{\boldsymbol{i}} \mathrm{B}_{\boldsymbol{i}} \mathrm{C}_{\boldsymbol{i}}$
2) A BCD-to- 7 segment decoder has 0100 on its inputs. The active outputs are
a) $a, c, f ; g$
b) $b, c, f ; \mathbf{g}$
c) b, c, e, f
d) b, d, e, g
3) A 6×64 line decoder can be built using:
a) six $2 x 4$ line decoders only
b) nine 2×4 line decoders only
c) seven $3 x 8$ line decoders only
d) nine 3×8 line decoders only
4) A demultiplexer can be used as
a) Encoder
b) Multiplexer
c) Decoder
d) None of the above
5) An 8-to-1 multiplexer has inputs \mathbf{A}, \mathbf{B} and \mathbf{C} connected to the selection inputs $\mathbf{S 2}, \mathbf{S 1}$ and $\mathbf{S 0}$, respectively. The data inputs $\boldsymbol{I}_{\mathbf{0}}$ through $\boldsymbol{I}_{\mathbf{7}}$ are as follows:
$I_{1}=I_{2}=0 ; \quad I_{3}=I_{5}=I_{7}=1 ; \quad I_{0}=I_{4}=\bar{D} \quad$ and $\quad I_{6}=D$
The Boolean function that the multiplexer implements is:
a) $\quad F=\Sigma m(0,6,7,8,10,11,13,14,15)$
b) $\quad F=\Sigma m(1,2,3,4,5,9,12)$
c) $\quad F=\Sigma m(0,6,7,8,9,11,13,14,15)$
d) $\quad F=\Sigma m(0,6,7,9,11,14,15)$
a) What function $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ is implemented in the figure shown below? You may answer using the minterm notion.

Solution

b) A combinational circuit is defined by the following three Boolean functions:
(5 marks)

$$
\begin{aligned}
& \mathbf{F 1}=\overline{X+Y}+X Y Z \\
& F 2=\overline{X Z} Y \\
& F 3=\overline{\bar{X}+Y}+\bar{X} \bar{Y} \bar{Z}
\end{aligned}
$$

Design the circuit with a 3-to-8 decoder and external gates.

Solution

Design the function $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\sum \mathbf{m}(\mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3})$ using $\mathbf{8 x} \mathbf{1 m u l t i p l e x e r}$.

Solution

Construct a 1-to-32 demultiplexer using only two types of demultiplexers: 1-to-4 and 1-to-8.

Solution

GOOD LUCK

