Philadelphia University

Faculty of Engineering

Student Name: Student Number: Serial Number:

First Exam, Second Semester: 2018/2019 Dept. of Computer Engineering

-		L	1	0	0	
Cour	se Title:	Logic Circuits			Date:	24/03/2019
Cour	se No:	630211			Time Allowed:	50 Minutes
Lect	urer:	Dr. Qadri Hamarshel	h		No. Of Pages:	4

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 4 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Question 1 Multiple Choices:

Identify the choice that best completes the statement or answers the question.

1) Convert the octal number 35₈ to decimal

	a)	71	b)	92
	c)	17	d)	29
2)	Binary 10111	111 is in hexadecimal.		
	a)	BF ₁₆	b)	277 ₁₆
	c)	10111111	d)	FB ₁₆
3)	The 2's compl	ement of 11100111 is		
	a)	11100110	b)	00011001
	c)	00011000	d)	00011010
4)	The BCD num	ber for decimal 347 is		
		1100 1011 1000	b)	1100 1011 0110
	C)	0011 0100 0001	d)	
5)	Universal log	vic gates are		
-)	a)	OR and AND	b)	NOT and OR
	c)	NAND and NOR	d)	OR and XOR

(7 marks)

6) The two circuits below are equal.

Familiar and Unfamiliar Problems Solving: The aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Boolean Expression Simplification, Karnaugh Maps and Logic Diagrams. **Question 2**(5 marks)

a) **Reduce (Simplify)** the logic circuit in to a minimum form (draw the simplified circuit).(3.5 marks)

b) Convert the **SOP** expression to an equivalent **POS** expression:

$\overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$

Solution

Question 3

(4 marks)

Write \mathbf{F} in Standard (canonical) Sum of Products Form (**SOP**) (Minterms).

$$F = \left(AB\right)\left(\overline{\overline{C}D}\right) + \left(\overline{B+C} + \overline{A}\right) + \left(\overline{B}D\overline{A}\right)$$

Solution

Question 4

Using a Karnaugh map, find minimal ${\tt SOP}$ expression for

$$f = \sum m(0, 2, 4, 6, 7, 10, 3, 14, 15)$$

GOOD LUCK