Philadelphia University
Faculty of Engineering

Student Name:
Student Number:
Serial Number:

First Exam, First Semester: 2019/2020
Dept. of Computer Engineering

Course Title:	Logic Circuits	Date:	$21 / 11 / 2019$
Course No:	630211	Time Allowed:	50 Minutes
Lecturer:	Dr. Qadri Hamarsheh	No. Of Pages:	4

Instructions:

- ALLOWED: pens and drawing tools (no red color).
- NOT ALLOWED: Papers, calculators, literatures and any handouts. Otherwise, it will lead to the non-approval of your examination.
- Shut down Telephones, and other communication devices.

Please note:

- This exam paper contains 4 questions totaling 20 marks
- Write your name and your matriculation number on every page of the solution sheets.
- All solutions together with solution methods (explanatory statement) must be inserted in the labelled position on the solution sheets.
- You can submit your exam after the first hour.

Question 1 Multiple Choices:

1) The binary number for F7A9 ${ }_{16}$ is
a) 1110111110101001
b) 1111111010110001
c) 1111011110101001
d) 1111011010101001
2) When signed numbers are used in binary arithmetic, then which one of the following notations would have unique representation for zero?
a) Sign-magnitude
b) 9's complement
c) 1's complement
d) 2's complement
3) The signed magnitude number $\mathbf{1 1 0 0 1 1 0 0} 2$ is equivalent to
a) $\quad \mathbf{- 7 6}{ }_{10}$
b) $\quad 204_{10}$
c) $\quad \mathbf{C C}_{16}$
d) 1212_{10}
4) The octal equivalent of the number (700) $\mathbf{1 0}_{16}$ is:
a) 1000
b) $\mathbf{3 4 0 0}$
c) $\mathbf{7 0 0}$
d) $\mathbf{7 0 0 0}$
5) The octal number represented by the binary number $\mathbf{1 1 0 1 1 1 0 1 1 . 1 0 1 _ { 2 }}$ is
a) 673.5
b) 31311.21
c) 1 BB
d) none of the above
6) In the sum of products functions $f(X, Y, Z)=\sum(2,3,4,5)$, the prime implicants are
a) $\bar{X} Y, X \bar{Y}$
b) $\bar{X} Y, X \bar{Y} \bar{Z}, X \bar{Y} Z$
c) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y}$
d) $\bar{X} Y \bar{Z}, \bar{X} Y Z, X \bar{Y} \bar{Z}, X \bar{Y} Z$

Identify the choice that best completes the statement or answers the question.
Familiar and Unfamiliar Problems Solving: The aim of the questions in this part is to evaluate that the student has some basic knowledge of the key aspects of the lecture material and can attempt to solve familiar and unfamiliar problems of Boolean Expression Simplification, Karnaugh Maps and Logic Diagrams.

Question 2 Using Boolean algebra rules, do the following
a) Simplify the following logic expression
(5 marks)
(2 marks)

$$
\mathrm{f}=\mathrm{AB}+\mathrm{A} \overline{\mathrm{C}}+\mathrm{C}+\mathrm{AD}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{ABC}
$$

Solution

b) Reduce (Simplify) the logic circuit in to a minimum form.

Solution
a) Express the Boolean function

$$
D=(\bar{A}+B)(\bar{B}+C)
$$

a) As a product of maxterms.
b) As a sum of minterms.
Solution
b) Show the Truth Table for the Following function:-

$$
\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{wx}+\mathrm{xz}+\bar{y}
$$

Solution

Use a K-map to simplify the Boolean expression

$$
\mathrm{E}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}} \mathrm{D}+\overline{\mathrm{A}} \mathrm{CD}+\overline{\mathrm{A}} \overline{\mathrm{C}}+\mathrm{C}
$$

Solution

GOOD LUCK

