
Algorithm Analysis: The Big-O Notation 
 

• Analyze algorithm after design  
• Delivering packages example 
Calculate the shortest distance from the shop to a particular destination. 

– 50 packages delivered to 50 different houses  
– 50 houses one mile apart, in the same area 

 
 
 
 
 
 
Package delivering scheme 1 

– Driver picks up all 50 packages  
– Drives one mile to first house, delivers first package  
– Drives another mile, delivers second package  
– Drives another mile, delivers third package, and so on  
– Distance driven to deliver packages  

1+1+1+… +1 = 50 miles 
– Total distance traveled:  50 + 50 = 100 miles  

 
 
 
 
 
Package delivering scheme 2 

– Similar route to deliver another set of 50 packages  
• Driver picks up first package, drives one mile to the first house, delivers package, returns to the shop  
• Driver picks up second package, drives two miles, delivers second package, returns to the shop  
– Total distance traveled  

2 * (1+2+3+…+50) = 2550 miles 
 
 
 
 
 

– n packages to deliver to n houses, each one mile apart  
– First scheme: total distance traveled  

1+1+1+… +n = 2n miles 
Function of n 

– Second scheme: total distance traveled  
2 * (1+2+3+…+n) = 2*(n(n+1) / 2) = n2+n  

Function of n2 (n2 is the dominant term in the above equation) 
 
 

Gift shop and each dot representing a house 

Package delivering scheme 1 

package delivery scheme 2 
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– Notation useful in describing algorithm behavior  
– Shows how a function f(n) grows as n increases without bound  

– Asymptotic  
– Study of the function f as n becomes larger and larger without bound  
– Examples of functions  

• g(n)=n2 (no linear term)  
• f(n)=n2 + 4n + 20  

As n becomes larger and larger  
– Term 4n + 20 in f(n) becomes insignificant  
– Term n2 becomes dominant term  

 
 
 
 
 
 
 
 
 
 
 
 
 

• Algorithm analysis  
– If function complexity can be described by complexity of a quadratic function without the 

linear term  
• We say the function is of O(n2) or Big-O of n2  

• Let f and g be real-valued functions  
– Assume f and g nonnegative  

• For all real numbers n, f(n) >= 0 and g(n) >= 0  
• f(n) is Big-O of g(n): written f(n) = O(g(n))  

– If there exists positive constants c and n0 such that f(n) <= cg(n) for all n >= n0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Growth rate of n2 and n2 + 4n + 20n 

Some Big-O functions that appear in algorithm analysis 


