Algorithm Analysis: The Big-O Notation

- Analyze algorithm after design
- Delivering packages example

Calculate the shortest distance from the shop to a particular destination.

- 50 packages delivered to 50 different houses
- 50 houses one mile apart, in the same area

Gift shop and each dot representing a house

Package delivering scheme 1

- Driver picks up all 50 packages
- Drives one mile to first house, delivers first package
- Drives another mile, delivers second package
- Drives another mile, delivers third package, and so on
- Distance driven to deliver packages

$$
1+1+1+\ldots+1=50 \text { miles }
$$

Total distance traveled: $\quad \mathbf{5 0}+\mathbf{5 0}=\mathbf{1 0 0}$ miles

Package delivering scheme 1

Package delivering scheme 2

- Similar route to deliver another set of 50 packages
- Driver picks up first package, drives one mile to the first house, delivers package, returns to the shop
- Driver picks up second package, drives two miles, delivers second package, returns to the shop
- Total distance traveled

$$
2 *(1+2+3+\ldots+50)=2550 \text { miles }
$$

package delivery scheme 2

- n packages to deliver to n houses, each one mile apart
- First scheme: total distance traveled

$$
\begin{gathered}
1+1+1+\ldots+n=2 n \text { miles } \\
\text { Function of } n
\end{gathered}
$$

- Second scheme: total distance traveled

$$
2 *(1+2+3+\ldots+n)=2^{*}(n(n+1) / 2)=n^{2}+n
$$

Function of \mathbf{n}^{2} (n^{2} is the dominant term in the above equation)

Various values of $n, 2 n, n^{2}$, and $n^{2}+\boldsymbol{n}$			
n	$2 n$	n^{2}	$n^{2}+\boldsymbol{n}$
1	2	1	2
10	20	100	110
100	200	10,000	$1,000,000$
1000	2000	$100,000,000$	$1,001,000$
10,000	20,000		$100,010,000$

Analyzing an algorithm

- Count number of operations performed by the algorithm, Not affected by computer speed
- Example 1-1
- Illustrates fixed number of executed operations

```
cout << "Enter two numbers";
//Line 1
cin >> num1 >> num2; //Line 2
if (num1 >= num2) //Line 3
    max = num1; //Line 4
else //Line 5
    max = num2;
cout << "The maximum number is: " << max << endl; //Line 7
```

The total number of operations performed by the above code is equal to 8

- Example 1-2
- Illustrates dominant operations

```
cout << "Enter positive integers ending with -1" << endl; //Line 1
count = 0; //Line 2
sum = O; //Line 3
cin >> num; //Line 4
while (num != -1) //Line 5
{
        sum = sum + num; //Line 6
        count++; //Line 7
        cin >> num; //Line 8
}
cout << "The sum of the numbers is: " << sum << endl; //Line 9
if (count !=0) //Line 10
average = sum / count;
else
    average = 0; //Line 13
cout << "The average is: " << average << endl; //Line 14
```

Line 1-4 has 5 operations,
Line 5-8 has 5 operations
Line $9-14$ has 8 or 9 operations depending on whether line 11or line 13 executes.
Then the total number of operations, when the while loop executes n times

$$
5 n+15 \text { or } 5 n+14
$$

Note: one extra operation is executed to terminate the loop.
For very largen, the term $5 n$ becomes the dominating term and 14 or 15 becomes insignificant.
Certain operations in different algorithms are dominant
Example:
In Matrix multiplication, the two operations are addition and multiplication, but the dominant is the multiplication, so we count the total number of multiplications operations.

Search algorithm

- n : represents list size
- f(n): count function
- Number of comparisons (dominant operation) in search algorithm.
- c: units of computer time to execute one operation
- cf(n): computer time to execute f(n) operations
- Constant c depends computer speed (varies)
- $\mathrm{f}(\mathrm{n})$: number of basic operations (constant)
- Determine algorithm efficiency
- Knowing how function $f(n)$ grows as problem size grows

Growth rates of various functions

| n | $\log _{2} n$ | $n \log _{2} n$ | n^{2} | $2^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 2 |
| 2 | 1 | 2 | 2 | 4 |
| 4 | 2 | 8 | 16 | 16 |
| 8 | 3 | 24 | 64 | 256 |
| 16 | 4 | 64 | 256 | 65,536 |
| 32 | 5 | 160 | 1024 | $4,294,967,296$ |

- Notation useful in describing algorithm behavior
- Shows how a function $f(n)$ grows as n increases without bound
- Asymptotic
- Study of the function f as n becomes larger and larger without bound
- Examples of functions
- $g(n)=n^{2}$ (no linear term)
- $f(n)=n^{2}+4 n+20$

As n becomes larger and larger

- Term $4 n+20$ in $f(n)$ becomes insignificant
- Term n^{2} becomes dominant term

Growth rate of n^{2} and $n^{2}+4 n+20 n$

n	$g(n)=n^{2}$	$f(n)=n^{2}+4 n+20$
10	100	160
50	2500	2720
100	10,000	10,420
1000	$1,000,000$	$1,004,020$
10,000	$100,000,000$	$100,040,020$

- Algorithm analysis
- If function complexity can be described by complexity of a quadratic function without the linear term
- We say the function is of $O\left(n^{2}\right)$ or Big-O of n^{2}
- Let f and g be real-valued functions
- Assume f and g nonnegative
- For all real numbers $n, f(n)>=0$ and $g(n)>=0$
- $\quad f(n)$ is Big-O of $g(n)$: written $f(n)=O(g(n))$
- If there exists positive constants c and n_{0} such that $f(n)<=\operatorname{cg}(n)$ for all $n>=n_{0}$

Some Big-O functions that appear in algorithm analysis

Function $g(n)$
$g(n)=1$
$g(n)=\log _{2} n$
$g(n)=n$
$g(n)=n \log _{2} n$
$g(n)=n^{2}$
$g(n)=2^{n}$

Growth rate of $f(n)$

The growth rate is constant and so does not depend on n, the size of the problem.

The growth rate is a function of $\log _{2} n$. Because a logarithm function grows slowly, the growth rate of the function f is also slow.

The growth rate is linear. The growth rate of f is directly proportional to the size of the problem.

The growth rate is faster than the linear algorithm.
The growth rate of such functions increases rapidly with the size of the problem. The growth rate is quadrupled when the problem size is doubled.

The growth rate is exponential. The growth rate is squared when the problem size is doubled.

