
Algorithm Analysis: The Big-O Notation

• Analyze algorithm after design
• Delivering packages example
Calculate the shortest distance from the shop to a particular destination.

– 50 packages delivered to 50 different houses
– 50 houses one mile apart, in the same area

Package delivering scheme 1

– Driver picks up all 50 packages
– Drives one mile to first house, delivers first package
– Drives another mile, delivers second package
– Drives another mile, delivers third package, and so on
– Distance driven to deliver packages

1+1+1+… +1 = 50 miles
– Total distance traveled: 50 + 50 = 100 miles

Package delivering scheme 2

– Similar route to deliver another set of 50 packages
• Driver picks up first package, drives one mile to the first house, delivers package, returns to the shop
• Driver picks up second package, drives two miles, delivers second package, returns to the shop
– Total distance traveled

2 * (1+2+3+…+50) = 2550 miles

– n packages to deliver to n houses, each one mile apart
– First scheme: total distance traveled

1+1+1+… +n = 2n miles
Function of n

– Second scheme: total distance traveled
2 * (1+2+3+…+n) = 2*(n(n+1) / 2) = n2+n

Function of n2 (n2 is the dominant term in the above equation)

Gift shop and each dot representing a house

Package delivering scheme 1

package delivery scheme 2

A

T

Analyzing a
– C

• Exam
– I

The total nu
• Exam

– I

an algorith
Count numb
mple 1-1
llustrates fix

mber of ope
mple 1-2
llustrates do

m
ber of opera

xed number

erations per

ominant ope

Various v

ations perfor

r of execute

rformed by

erations

values of

rmed by the

ed operation

the above c

n, 2n, n2,

e algorithm,

ns

code is equa

and n2 + n

 Not affect

al to 8

n

ted by compputer speed

L
L
L
T

N
F
C
E
In
m
S

Line 1-4 has
Line 5-8 has
Line 9-14 ha
Then the tot

Note: one ex
For very larg
Certain oper
Example:
n Matrix mu

multiplicatio
Search algo

– n
– f
– N
– c
– c
– C
– f
– D
– K

s 5 operation
s 5 operation
as 8 or 9 op
tal number o

xtra operatio
ge , the term
rations in di

ultiplication
on, so we co
orithm
n: represents
f(n): count f
Number of c
c: units of co
cf(n): compu
Constant c d
f(n): number
Determine a
Knowing ho

Grow

ns,
ns
erations dep
of operation

on is execut
m 5 becom
ifferent algo

n, the two o
ount the tota

s list size
function
comparison
omputer tim
uter time to
depends com
r of basic op

algorithm ef
ow function

wth rate of

pending on
ns, when the

5
ted to termi
mes the dom
orithms are

operations ar
al number o

s (dominant
me to execut
 execute f(n

mputer spee
perations (c
fficiency
f(n) grows

Growth r

f functions

whether lin
e while loop

15 5
nate the loo

minating ter
dominant

re addition
of multiplica

t operation)
te one opera
n) operation
ed (varies)
constant)

as problem
rates of var

s in the pr

ne 11or line
p executes
5 14
op.
rm and 14 o

and multipl
ations opera

) in search a
ation
ns

m size grows
rious funct

revious ta

13 execute
 times

r 15 becom

lication, but
ations.

algorithm.

s
ions

able

es.

mes insignifi

t the domina

cant.

ant is the

– Notation useful in describing algorithm behavior
– Shows how a function f(n) grows as n increases without bound

– Asymptotic
– Study of the function f as n becomes larger and larger without bound
– Examples of functions

• g(n)=n2 (no linear term)
• f(n)=n2 + 4n + 20

As n becomes larger and larger
– Term 4n + 20 in f(n) becomes insignificant
– Term n2 becomes dominant term

• Algorithm analysis
– If function complexity can be described by complexity of a quadratic function without the

linear term
• We say the function is of O(n2) or Big-O of n2

• Let f and g be real-valued functions
– Assume f and g nonnegative

• For all real numbers n, f(n) >= 0 and g(n) >= 0
• f(n) is Big-O of g(n): written f(n) = O(g(n))

– If there exists positive constants c and n0 such that f(n) <= cg(n) for all n >= n0

Growth rate of n2 and n2 + 4n + 20n

Some Big-O functions that appear in algorithm analysis

