PHILADELPHIA UNIVERSITY FACULTY OF ENGINEERING

Department of Mechanical Engineering

Course Title: Refrigeration systems (620449)

Text Book: Principles of refrigeration. By Roy J. Dossat and

Thomas J. Horan, 5th edition.

Providing Dept.: Mechanical Engineering Instructor: Dr. Shatha Ammourah

Level: 4th year Credit Hours: 3

Course Goals:

To understand the refrigeration principles and application in order to make the right choice of a refrigeration system or component in the practical life.

Time Schedule:

Duration:16 WeeksLectures:3 hours / weekTutorial:0 hour / weekLaboratories:0 hours / week

Objectives:

- Understand the basic terminology of refrigeration science and its applications and learn the methods of refrigeration.
- Be capable of identifying thermodynamic properties of refrigerants in a manner that allows a student to comprehend the science related to refrigeration processes.
- Understand effectively the processes that occur in a gas compression refrigeration
 cycle and to develop the foundation needed to understand the underlying theory of
 refrigeration component and system operation.

Course Contents

	Weeks
 Introduction to mechanical refrigeration, Internal properties of matter 	1
 The theoretical vapor compression cycle, Cycle diagram, and the actual vapor compression cycle. 	3
	2
• Characteristics of refrigerants.	1
 Evaporators, Types of evaporators, Methods of defrosting evaporators 	2
 Compressors, Compression cycle, Analysis, Types of compressors 	2
 Condensers, Condensers load, Air cooled condenser, Water cooled condenser, Evaporative condensers, Analysis 	2
 Refrigerant Expansion Valves, Constant pressure, Thermostatic expansion valve, Expansion valves selection 	2
 Optional related topic (depends on the time left of the semester) 	

Mode of Assessment

1.	first exam	(15%)
2.	second exam	(15%)
3.	Project, home works and quizzes	(20%)

4. Final exam (50%)

References

- 1. W.F. Stoecker, Refrigeration and Air conditioning, McGraw-Hill Book Company, 1985.
- 2. S.K. Kulshrestha, Refrigeration and Air conditioning, Khanna phblishers, 1996.
- 3. C P Arora, Refrigeration and Air conditioning, Tata McGraw Hill 1996.
- 4. Y. Cengel, Thermodynamics and engineering approach, 5th edition.