Select the amino acid that has a sul	fur (S) atom in its side chain:		
A. Arginine	B. Proline		
C. Aspartic Acid	D. Methionine		
E. Serine			
The bond between alpha carbon and	d carboxyl carbon in amino acids is called:		
A. Hydrogen.	B. Hydrophobic.		
C. Covalent.	D. Ionic.		
E. Peptide bond.			
All of the followings are true regard	ling Aspartam (Nutrasweet) <u>except</u>		
A. It is a dipeptide.			
B. Contains L-amino acids.			
C. Contains one peptide bond			
D. Consists of phenylalanine a	nd aspartic acid.		
E. It has exactly the same swee	etness taste compared to sugar.		
Which amino acid side chain is mo	st likely to be on the surface of a water soluble protein?		
A Alanine	B Phenylalanine		
C. Isoleucine	D Tryptophane		
E Lysine	<i>D</i> . Hyptophane		
"X" represents the native enzyme a	nd "Y" the enzyme plus		
a fixed concentration of a modifier.	The modifier		
A. Does not affect the V_{max} of the	e enzyme.		
B. Increases the K _m of the enzyr	ne. v [/ 1		
C. Is a non-competitive inhibito			
D. Is a competitive inhibitor.			
E. Is an allosteric inhibitor.	[Substrate]		
Which is true regarding oxytocin?			
A Inhibit prostaglandin synthes	IS		
B A pentide hormone consists of	of 100 amino acids		
C A lipid molecule	i roo annio acids.		
D Induce labor in pregnant wor	nan		
E Controls blood pressure			
The interactions that give stability of	of a protein tertiary structure is (are).		
A Electrostatic interactions			
B. Hydrogen bonds.			
C. Disulphide bridge.			
D Hydrophobic interactions			
E. All of the above.			
An enzyme was incubated with the	inhibitor (+I) or without the inhibitor (-I) as		
shown in the Figure. What is the most reasonable interpretation of the data?			
A. The inhibitor binds irreversibly to the active site.			
B. The inhibitor binds on a location other than the active site.			
C. The inhibitor does not change V_{max} .			
D. The inhibitor decreases K_m .			
E. The I is a competitive inhibit	or.		
	h of the following ionic species of glutamate		
	n or the ronowing tome species of glutalitate		
	dominant at nH 72		
$\begin{bmatrix} (C)HOUC-CH-(CH2)2-COU & IS PIC \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	aominant at pri 7:		
(D) 000-CH-(CH ₂)2-COU			
(E) - 000-0H-(0H-)000-			
NH ₂			

page #

Which element is always found in proteins but usually not in triacylglycerol ?				
A. Carbon	B. Phosphc	rus		
C. Nitrogen	D. Oxygen			
E. Hydrogen				
The melting temperature of o	leic fatty acid (18:1 ci	s) is 16 ^o C. Which of the following fatty acid has a		
melting temperature less than	$16^{\circ} \mathrm{C}?$			
A. 18:1 trans		B. 18:0		
C. 18:2 (both cis)		D. 20:1 cis		
E. 20:0				
All of the followings are true	about cholesterol exc	ept:		
A. Cholesterol is part of ce	ellular membrane in ar	imals and human.		
B. Cholesterol id a precurs	sor of vitamin D.			
C. Cholesterol is a precurs	or of sex hormones.			
D. Cholesterol structure co	ontains three hydroxyl	group linked to three carbons.		
E. Cholesterol moves in blo	ood on cholesterol carr	ier proteins such as LDL and HDL.		
Which of the followings is an	aldehyde:			
A. R-NH ₂	B. R-OH	C. CH ₃ -O-CH ₃		
D. R-(C=O)-OH	E. R-(C=O)-H			
All of the followings inhibit	prostaglandin biosynth	esis <u>except</u>		
A. Omega 3 fatty acids	B. A	Asprin		
C. Steroid drugs	D. J	anadol drug		
E. Non-steroidal anti-infla	mmatory drugs.	c .		
All are general characteristics	s of lipids except :			
A. Insoluble in water.	1 <u>-</u>			
B. Soluble in organic solv	vent such as chlorofor	n.		
C. All contain fatty acids				
D. Considered as non-pol	ar compounds.			
E. Considered hydrophot	pic.			
All the following are true for	Watson & Crick mod	el of double helix except		
A. Molar ratio of guanin	e equal to cytosine.	· · · · · · · · · · · · · · · · · · ·		
B. The DNA has a doub	e helix structure.			
C. The two strands are in	anti-parallel direction	is (5' to 3" and 3' to 5').		
D The DNA contains ril	ose			
E. The DNA contains ph	osphate group.			
Which of the following is needed.	ded for formation of a	new phosphodiester bond in a DNA strand?		
A Free 3'-OH on that strand B Ribosomes				
C Ribonucleotides D Free 5' – Phonsnate on that strand				
E All of the above	D.110			
Glycogen structure is most si	milar to the structure	of		
a Amylose b Amylopect	in c Cellulose	d Pectin e Chitin		
	in c. condiose			
Which of the following carbo	hydrates is a structur	al component of some cells:		
a Starch b Glycogen c Amylopectin d Amylose e Cellulose				
a. Staren - 5. Grycogen	e. / mytopeetin	d. Amylose C. Centrose		
Which of the following is considered as a distary fiber:				
a Sucrose h Glycogen c Pectin d Amylose e Plastic				
a. Sucrose S. Srycogen C. Petin a. Annylose C. Plaste				
Number of stereoisomers of ketohevoses (linear not circular) is:				
a^2 b^4	c 8	d 16 e 32		
	0.0	d. 10 0. 02		
Example of reducing sugars	is (are):			

	Sample Blochem Exam page #
a. Sucrose. b. Fructose. c. Gluco	ose.
d. A ketose monosaccharide. e. All are reducing suga	ars.
Characteristic of glycosidic bonds between glucose molecules of an	mylose is
a. α (1,4) in chains with α (1,6) in branches	
b. Contain only chains of α (1,4) in chains	
c. α (1,6) in chains with α (1,4) in branches	
d. Contain only chains of α (1,6) in chains	
e. None of the above	
Number of <u>chiral carbons</u> of glucose (the circular glucose)	
a. 2 b. 3 c. 4 d. 5	e. 6
All are true regarding catabolism <u>except</u>	
a. Break down of molecules into smaller.	
b. Oxidation process.	
c. Produce energy (net).	
d. Catabolism uses the same enzymes for the reverse anabolism	n pathway.
e. Example of catabolism is glycolosis.	
The pentose phosphate pathway is alternative pathway to glycolosis	and <u>used to</u>
a. Generate NADH.	
b. Generate five carbon backbones.	
c. Generate energy such as ATP.	
d. Only a and b.	
e. Only b and c.	
All of the followings are produced directly from the citric acid cycle	e <u>except</u>
a. CO_2 b. GTP c. $NADH$ d. NAD^+ e. FAD	DH ₂
 a. The enzyme has five different isozymes. b. The different isozymes are made of two subunits (M and H). c. Each enzyme molecule has a total of two subunits. d. The activity of the enzyme from blood is used as a clinical te e. It is possible to differentiate heart isozyme from other isozym Citric acid cycle is inhibited in some cells by a. High amounts of ATP and NADH. b. High amounts of oxy e. The cell needs energy. d. High amounts of oxy e. The cycle is not regulated and runs at all the time. 13 Acetyl CoA is the central compound in many anabolic and cat 	est for heart disease. nes. DP and NAD ⁺ . ygen. tabolic pathways. The name of the main
a Amino acid synthesis	C.
c Citric acid cycle d B-ovidation	0
e Pentose phosphate pathway	
Several enzymatic steps in metabolic pathways are consists of an er	zyme complex. The main advantage(s)
of such complex rather than having senarate enzymes is (are).	auvantage(s)
a Increase the efficiency h Fasier regulat	ion
c Allow different substrates to be used d Allows the res	verse reaction
e Only a and b	
The number of CO melecules produced in weat formentation for a	ach ana glucosa malacula is
The number of CO_2 molecules produced in yeast termentation for each $1 + 2$	ach <u>one glucose</u> molecule is
a. 1 b. 2 c. 4 d. 6	e. u
The <u>cellular location</u> of citric acid cycle in human is	
a. Mitochondrial outer membrane.	
b. Mitochondrial matrix.	
c. Mitochondrial inner membrane.	
d. Cytoplasm.	
e. None of the above.	

	Sample Biochem Exam page #			
Pyruvate dehydrogenase complex converts the substrate pyr	ruvate into acetyl CoA. Another direct			
product(s) of the reaction is (are):	-			
a. CO_2 b. ATP c. NAD^+ d. a and b	e. a and c			
Which is true in regards to pyruvate metabolism into lactate	e by the enzyme lactate dehydrogenase during			
anaerobic conditions				
a. NAD^+ is used to form NADH.				
b. NADH is used to form NAD^+				
c ATP is used to form ADP				
d ADP is used to for ATP				
e Lactate converted in muscles into glucose				
All the followings are true about glycogen excent				
a Glycogen loading used to increase glycogen storage in	n muscles and liver			
b Glycogen is converted into glucose when it is needed				
c Glycogen is usually used in less than 30 minutes				
d Brain store glycogen to convert into glycose when it is	sneeded			
e Glycogen is a branched polymers of glycose	, needed.			
The role of citric acid cycle in metabolism is (are)				
a Catabolism of fatty acids after B-oxidation				
b Catabolism of some amino acids after removal of nitr	rogen			
c. Catabolism of carbohydrates after glycologis	ogen.			
d Intermediates in the citric acid cycle are used in analy	olism			
e All of the above	0115111.			
The protein that carries electrons between two of the electron	on transport complexes is			
a CoO b CoS c Cytochrom C d Cytochro	am = P450 $a = NADH$			
Lactors intolorance in human is the result from all of the f	Collowing excent:			
a The response of the immune system to lactose	onowing <u>except</u> .			
b Inability to digest lactose				
c. Microrganisms in the colon metabolize lactose				
d. Low or absonce of lastage onzume				
a. Drinking milk				
After complete aerobic ovidation of one glucose molecule	how many equivalent molecules of ATP are			
and reduced during the aitria acid avala?	now many equivalent molecules of ATT are			
a 4 b 8 a 10 d 20	22			
<u>a. 4 0. 6 C. 10 U. 20 C.</u>	sz			
formed?	sport system, now many molecules of <u>ATT are</u>			
$\frac{101 \text{ med}}{2}$	3.0			
<u>a. 1.0</u> <u>b. 1.5</u> <u>c. 2.0</u> <u>d. 2.5</u> <u>c.</u>	5.0			
Cyalinde is a poison <u>because</u> it				
a. Diffus to field by detine the second states				
b. Interferes with oxidative phosporylation.				
c. Interferes with electron transport.				
d. Acts as un-coupler in the mitochondria.				
e. Innibits the cytochrome P-450 monooxygenases.				
After oxygen accept electrons at the end of oxidative phosp.	horylation the following compound is formed:			
$a. H_2O$ $b. CO_2$ $c. Proton$ $d. Cyanide$	Azide			
Which is the main source of blood glucose after 10 hour sta	rvation (no food)?			
a. Glycogen. b. Nucleic acids. c. Triacylglycerols.				
d. Muscle proteins. e. Fat.				
Which is true regarding electrons transport from NADH and creating the chemiosmotic potential:				
a. NADE transfers electrons from internet into intermembrane space.				
D. NADH transfers electron from intermembrane space into matrix.				
c. NADH transfers protons from matrix into intermembra	ne space.			
d. NADH transfers protons from intermembrane space int	to matrix.			
e. NADH loses electrons to complex II.				
The compounds the separate electron transport from oxidati	ve phosphorylation in cellular respiration are			

4

5

called a. Respiratory inhibitors b. Uncouplers c. Cytochrome d. Separators Name of the main enzyme in oxidative phosphorylation a. ATP phosphorylase b. ATP kinase c. ATP dehydrogenase d. ATP synthase